A 3D agent-based model for simulating urban redevelopment at the building scale
基于 3D 代理的模型,用于模拟建筑规模的城市重建
基本信息
- 批准号:NE/X006727/1
- 负责人:
- 金额:$ 1.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
EPSRC : Richard Burke : EP/S023577/1 Toronto is currently one of the top three fastest growing central cities in North America. Between 2006-2016, Toronto's population grew by 9% and by 2030 the population is projected to grow by an additional 13%. This exponential growth is primarily attributed to high levels of immigration, with immigrants constituting just under 50% of Toronto's population. Toronto's population growth and limited land availability has caused a real estate bubble: a significant rise in property prices due to demand outpacing supply. To ensure it remains a liveable city, Toronto must focus on rebuilding, reurbanising and regenerating within an existing urban structure that is difficult to change. Redevelopment of the existing city should be prioritised to address this real estate crisis and ensure it remains a resilient city. The most appropriate way to explore Toronto's potential for redevelopment is to evaluate current city planning regulations, the real estate market and urban form in a simulation environment to evaluate their longevity and robustness.Agent-based models are ideal to evaluate Toronto's future urban redevelopment potential as they provide a suitable environment to replicate the urban redevelopment process. This modelling technique provides a conceptual and theoretical framework to simulate spatially dynamic processes through self-activities and interactions between various rule-based agents. Agent-based models are very dynamic and have been applied to a wide range of research topics, such as modelling pedestrian movements for simulating COVID-19 transmission and future urban expansion dynamics. The definition of agents in an agent-based models are unlimited and can represent key actors in the redevelopment process, such as government, resident, and developer stakeholders as well as spatial entities important in urban redevelopment such as land parcels, roads, and buildings. Agent-based models are very well suited to simulate urban redevelopment as they can capture the complex relationships between urban planning regulations, the real estate market and urban form which are important factors needed to accurately replicate the urban redevelopment process.Therefore, the aim of this project is to explore how Toronto's planning regulations, real estate market and urban form influence the feasibility of redevelopment within the city. The expected results will contribute to society and industry through the creation of 3D spatial decision support system as one of the key deliverables. This tool will help inform stakeholders of the viability of current urban regulation policies, provide insight into the most suitable locations for future urban redevelopment projects and help improve overall city management. In addition, the implementation of 3D visualisation is beneficial for urban planners to understand and interpret how vertical height limitations can impact the opportunity of redevelopment. Overall, the approach of this project will highlight how agent-based models are an invaluable tool to address the Canadian real estate crisis and can contribute to urban redevelopment initiatives to ensure a more functional city. This approach will provide a dynamic framework which can be readily applied to other Canadian cities experiencing similar real estate challenges and will ultimately improve Canada's capability to develop more sustainable urban planning strategies and regulations.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alistair Ford其他文献
Do we need legends? An eye tracking study
我们需要传奇吗?
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jess Hepburn;D. Fairbairn;Philip James;Alistair Ford - 通讯作者:
Alistair Ford
An open framework for analysing future flood risk in urban areas
一个用于分析城市地区未来洪水风险的开放框架
- DOI:
10.1016/j.envsoft.2024.106302 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:4.600
- 作者:
Olivia Butters;Craig Robson;Fergus McClean;Vassilis Glenis;James Virgo;Alistair Ford;Christos Iliadis;Richard Dawson - 通讯作者:
Richard Dawson
Alistair Ford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
城市随迁老年人活动需求的影响机制与动态空间模型预测研究
- 批准号:2025JJ60227
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Agent的自动化渗透测试技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI Agent赋能中小企业智能决策系统研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
计算机控制Agent在可交互式企业征信报告生成的应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
大模型Agent驱动的AI制药关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
复杂网络理论下的智慧景区管理与人流控制方法
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
混合多元区域情境下多Agent的自主协同决策方法研究
- 批准号:62306099
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于操控员情境意识状态可解释Agent的智能交互触发机制研究
- 批准号:62376220
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多Agent仿真模型的新能源汽车市场渗透研究
- 批准号:2023JJ60196
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向联排联调的城市复合洪涝灾害风险Agent建模与智能决策
- 批准号:42371092
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Applying a complex systems perspective to investigate the relationship between choreography and agent-based modeling as tools for scientific sense-making
应用复杂系统的视角来研究编排和基于代理的建模之间的关系,作为科学意义构建的工具
- 批准号:
2418539 - 财政年份:2024
- 资助金额:
$ 1.57万 - 项目类别:
Continuing Grant
Implementing and Iterating WeWALK’s Agent-Based Guidance System (WeASSIST) in Rail Transport to Improve Visually Impaired Customer Experience
在铁路运输中实施和迭代 WeWALK 基于代理的引导系统 (WeASSIST),以改善视障客户体验
- 批准号:
10098144 - 财政年份:2024
- 资助金额:
$ 1.57万 - 项目类别:
Collaborative R&D
Normative Analysis of Variety of Disruptive Innovation Processes by Agent-Based Models
基于代理的模型对各种颠覆性创新过程的规范分析
- 批准号:
23H00853 - 财政年份:2023
- 资助金额:
$ 1.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A modeling approach for accurately predicting land use changes brought by human decisions
准确预测人类决策带来的土地利用变化的建模方法
- 批准号:
22KJ1856 - 财政年份:2023
- 资助金额:
$ 1.57万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Probabilistic Agent-Based Modelling for Predicting School Attendance
用于预测入学率的基于概率代理的建模
- 批准号:
2887257 - 财政年份:2023
- 资助金额:
$ 1.57万 - 项目类别:
Studentship
Sharing the Road: Exploring transitions away from private vehicle ownership through agent-based modelling
共享道路:通过基于代理的建模探索从私人车辆所有权的转变
- 批准号:
2887300 - 财政年份:2023
- 资助金额:
$ 1.57万 - 项目类别:
Studentship
Allogeneic BAFF Ligand Based CAR T Cells as a Novel Therapy for B Cell Malignancies
基于同种异体 BAFF 配体的 CAR T 细胞作为 B 细胞恶性肿瘤的新疗法
- 批准号:
10698759 - 财政年份:2023
- 资助金额:
$ 1.57万 - 项目类别:
A Multi-Institute Survivorship Study of Patients Living with Advanced Cancer Who Have Had Durable Response to Immune Checkpoint Inhibitors
对免疫检查点抑制剂有持久反应的晚期癌症患者的多机构生存研究
- 批准号:
10714336 - 财政年份:2023
- 资助金额:
$ 1.57万 - 项目类别:
Identifying Genetic Contributions to Adverse Drug Reactions
确定遗传因素对药物不良反应的影响
- 批准号:
10730434 - 财政年份:2023
- 资助金额:
$ 1.57万 - 项目类别:
Mechanism-based combination therapy for cholangiocarcinoma
基于机制的胆管癌联合治疗
- 批准号:
10650049 - 财政年份:2023
- 资助金额:
$ 1.57万 - 项目类别: