DV3M: Deforming Volcanoes with Dynamic Magma-Mush Models

DV3M:使用动态岩浆模型使火山变形

基本信息

  • 批准号:
    NE/X013944/1
  • 负责人:
  • 金额:
    $ 100.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

ContextOver 800 million people live near volcanoes, while many more depend on them for their livelihoods. Protecting lives and livelihoods during volcanic eruptions is the key challenge in volcanology, complicated by uncertainties in hazard assessment and eruption forecasting.Measurable ground deformation is one of the main tools used to monitor volcanoes and often results from the injection of magma beneath the surface. By combining measurements of deformation with models we can estimate locations and rates of magma supply that drive the displacements; these parameters feed into hazard assessments and eruption forecasts. However, the majority of models are based on outdated concepts and may be contributing to the noted uncertainties. They assume static fluid filled magma chambers despite a recent and exciting paradigm shift in our understanding of sub-volcanic magmatic systems which indicates magma is rather most likely stored in vertically extensive porous "mush" zones. The static magma chambers are also assumed to rupture (possibly leading to eruption) at a fluid-solid boundary according to a finite stationary failure threshold, but the distinct fluid-solid boundary is now thought to be unlikely in real scenarios, and the system inherently evolves dynamically in response to moving magma rather than statically. Therefore, the simple process of artificially inflating and rupturing a static chamber in the majority of volcano deformation models is a major simplification of reality, and introducing additional uncertainty into crucial model outputs. We do not know the influence of the new mush-paradigm on volcano deformation.Aims and objectivesDV3M is needed to advance a new generation of dynamic magma mush (DMM) volcano deformation models. DV3M aims to resolve the impact of porous magma-mush reservoirs on volcano deformation and reservoir stability. Project objectives are:1. Incorporate magma properties in DMM models that evolve in response to temperature and pressure.Evolution of magma properties cannot be accounted for in commonly employed static models of volcano deformation. DV3M will deliver a suite of DMM volcano deformation models that are coupled with temperature and pressure dependent changes in magma, exploiting new computationally efficient open-source tools. We will determine how dynamic changes in magma properties influence surface deformation patterns.2. Examine how time-dependent strain evolves in DMM models to understand magma-mush reservoir stability.New DMM models only now enable exploration of more realistic dynamic failure/stability criteria. DV3M will illuminate the range of expected strain-rates produced in magma-mush reservoirs undergoing magma recharge. DV3M model outputs with strain rates in excess of a newly determined threshold will promote brittle behaviour of the mush reservoir and could lead to failure; we will therefore provide a step-change in understanding of processes leading to potential eruptions.3. Apply DMM models to past and present periods of volcanic deformation at targeted high-risk volcanic centres.The new DMM models will be applied at Soufriere Hills volcano, Montserrat, and Sakurajima volcano, Japan. Accurate analysis of ongoing deformation and reservoir stability is needed using DMM models to fundamentally improve hazard assessments; continued use of static model approaches may be providing incorrect assessments influencing eruption potential analyses.Applications and benefitsDV3M will push beyond the state-of-the-art and fundamentally advance volcano deformation interpretations by more robustly and realistically estimating magma system parameters from observations. These improvements will reduce uncertainties in hazard assessment and eruption forecasting for benefit globally at deforming volcanoes, and in particular at our target volcanoes. The approaches developed will be globally applicable and of use in short- and long-term risk mitigation.
超过8亿人生活在火山附近,而更多的人依靠火山为生。在火山爆发期间保护生命和生计是火山学面临的主要挑战,灾害评估和火山爆发预测的不确定性使这一挑战更加复杂。可测量的地面变形是用于监测火山的主要工具之一,通常是由于岩浆注入地表以下造成的。通过将变形测量与模型相结合,我们可以估计驱动位移的岩浆供应的位置和速率;这些参数用于危险评估和喷发预测。然而,大多数模型都是基于过时的概念,可能会导致上述不确定性。他们假设静态流体充满岩浆房,尽管最近和令人兴奋的范式转变,我们的理解次火山岩浆系统,这表明岩浆是相当最有可能存储在垂直广泛的多孔“糊状”区。静态的岩浆房也被假定破裂(可能导致喷发)在流体-固体边界根据一个有限的固定故障阈值,但现在被认为是不可能的独特的流体-固体边界在真实的情况下,和系统固有的动态演变,而不是静态的移动岩浆。因此,在大多数火山变形模型中,人工膨胀和破裂静态腔室的简单过程是对现实的主要简化,并将额外的不确定性引入关键模型输出。我们不知道新的岩浆泥范式对火山变形的影响。目的和目标DV 3 M需要提出新一代的动态岩浆泥(DMM)火山变形模型。DV 3 M旨在解决多孔岩浆泥储层对火山变形和储层稳定性的影响。项目目标是:1.在DMM模型中加入岩浆特性,这些特性随温度和压力的变化而变化。在通常采用的火山变形静态模型中,岩浆特性的变化无法解释。DV 3 M将提供一套DMM火山变形模型,这些模型与岩浆的温度和压力相关变化相结合,利用新的计算效率高的开源工具。我们将确定岩浆性质的动态变化如何影响地表变形模式。研究DMM模型中随时间变化的应变如何演变,以了解岩浆泥储层的稳定性。新的DMM模型现在才能探索更现实的动态失效/稳定性标准。DV 3 M将阐明在岩浆泥储层进行岩浆补给的预期应变率的范围。应变率超过新确定的阈值的DV 3 M模型输出将促进糊状储层的脆性行为,并可能导致失败;因此,我们将提供一个步骤的变化,以了解导致潜在喷发的过程。将数字多媒体模型应用于目标高风险火山中心过去和现在的火山变形时期,新的数字多媒体模型将应用于蒙特塞拉特的苏弗里埃山火山和日本的樱岛火山。需要使用DMM模型对正在进行的变形和储层稳定性进行准确分析,以从根本上改善灾害评估;继续使用静态模型方法可能会提供影响喷发潜力分析的不正确评估。应用和效益DV 3 M将超越最先进的水平,并通过更稳健和更现实地从观测中估计岩浆系统参数,从根本上推进火山变形解释。这些改进将减少灾害评估和喷发预测方面的不确定性,对全球变形火山,特别是我们的目标火山有益。所制定的方法将在全球适用,并可用于短期和长期风险缓解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Hickey其他文献

Hydrogen-Based Technologies for Mobile Applications
用于移动应用的氢基技术
  • DOI:
    10.1201/9781420020861.ch11
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Hickey;P. Fornasiero;M. Graziani
  • 通讯作者:
    M. Graziani
Assessment of Lake Sturgeon (<em>Acipenser fulvescens</em>) Spawning Efforts in the Lower St. Clair River, Michigan
  • DOI:
    10.1016/s0380-1330(03)70445-6
  • 发表时间:
    2003-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    S. Jerrine Nichols;Gregory Kennedy;Eric Crawford;Jeffrey Allen;John French;Glen Black;Marc Blouin;James Hickey;Sergei Chernyák;Robert Haas;Michael Thomas
  • 通讯作者:
    Michael Thomas
OVLOVNIOV REPORT OVLOVNIOV REPORT OVLOVNIOV REPORT Rapid response petrology for the opening eruptive phase of the 2021 Cumbre Vieja eruption, La Palma, Canary Islands
奥夫洛夫尼奥夫报告 奥夫洛夫尼奥夫报告 奥夫洛夫尼奥夫报告 2021 年加那利群岛拉帕尔马岛 Cumbre Vieja 喷发初期喷发阶段的快速响应岩石学
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Pankhurst;J. Scarrow;O. Barbee;James Hickey;Beverley C. Coldwell;G. Rollinson;J. A. Rodríguez;Alba Martin‐Lorenzo;Fátima Rodríguez;William Hernández;David Calvo Fernández;P. Hernández;N. Pérez
  • 通讯作者:
    N. Pérez
Declining magma supply to a poroelastic magma mush explains long-term deformation at Soufrière Hills Volcano
多孔弹性岩浆糊的岩浆供应减少解释了苏弗里耶尔火山的长期变形
  • DOI:
    10.1016/j.epsl.2024.118624
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Rami Alshembari;James Hickey;Karen Pascal;R. Syers
  • 通讯作者:
    R. Syers

James Hickey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

How Large Earthquakes Change Our Dynamically Deforming Planet
大地震如何改变我们动态变形的星球
  • 批准号:
    DP240102450
  • 财政年份:
    2024
  • 资助金额:
    $ 100.71万
  • 项目类别:
    Discovery Projects
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
  • 批准号:
    EP/X031624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 100.71万
  • 项目类别:
    Research Grant
CAREER: Does long-term topography preserve details of the seismic cycle? Seeing through, and exploiting, the diverse forcings influencing actively deforming landscapes.
职业:长期地形是否保留了地震周期的细节?
  • 批准号:
    2237437
  • 财政年份:
    2023
  • 资助金额:
    $ 100.71万
  • 项目类别:
    Standard Grant
Mechanical forces regulate leukocyte migration in rapidly deforming tissues
机械力调节快速变形组织中的白细胞迁移
  • 批准号:
    10658854
  • 财政年份:
    2022
  • 资助金额:
    $ 100.71万
  • 项目类别:
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2022
  • 资助金额:
    $ 100.71万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanical forces regulate leukocyte migration in rapidly deforming tissues
机械力调节快速变形组织中的白细胞迁移
  • 批准号:
    10463951
  • 财政年份:
    2022
  • 资助金额:
    $ 100.71万
  • 项目类别:
Studies on functional improvement by deforming colloidal particles
通过胶体颗粒变形改善功能的研究
  • 批准号:
    21K05164
  • 财政年份:
    2021
  • 资助金额:
    $ 100.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2021
  • 资助金额:
    $ 100.71万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Flying Snakes: Fluid Mechanics of Deforming Articulated Bodies
合作研究:飞蛇:铰接体变形的流体力学
  • 批准号:
    2027534
  • 财政年份:
    2020
  • 资助金额:
    $ 100.71万
  • 项目类别:
    Standard Grant
4D quantification of micro-scale feedbacks in dehydrating, deforming rocks
脱水、变形岩石中微尺度反馈的 4D 量化
  • 批准号:
    NE/T001615/1
  • 财政年份:
    2020
  • 资助金额:
    $ 100.71万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了