Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
基本信息
- 批准号:RGPIN-2015-05606
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Canada is one of the largest producers of hydro and wind energy in the world. Optimally designed marine and wind turbine blades can further increase the production of these sources of renewable energy. More than two hundred floods have occurred in Canada over the past century taking many lives and causing billions of dollars in damage. An accurate prediction of flood plains when rivers overflow may prevent the loss of lives and help protect Canadian homes and businesses. These are just two applications that benefit tremendously from computer simulation tools. The success of these simulation tools, however, depends on the implemented algorithms. In this project we will develop new algorithms for more efficient and more accurate simulation tools.Recently we introduced a new class of higher-order accurate algorithms for fluid flows on domains with small deformations. This class has the potential of being more accurate and more efficient than many other numerical methods. Many flow simulations, however, require algorithms that can cope with fluid flows on domains with large deformations. Example of such large deformations include: topological changes in which the domain may split into several sub-domains (e.g. coalescence and break-up of bubbles in boiling processes) and flow around rotating components (e.g. in the design of marine or wind turbines). The overarching objective of the proposed research is to develop the methodology needed for simulating fluid flow on domains with large deformations, building upon our higher-order accurate algorithms.The proposed research benefits Canada by developing algorithms for next generation simulation tools. These tools will enable simulation of a wide variety of flows for applications in industry, environment and society. These applications may include: increasing the production of renewable energy through the design of optimal marine and wind turbine blades; predicting flood plains in the event of rivers overflowing due to extensive rainfall or snow-melt run-off; and predicting blood flow in artificial heart valves. Furthermore, the proposed research will train highly qualified personnel with the critical skills needed to develop and implement accurate numerical methods. This skill-set is essential for software development in Canada as it is widely believed that higher-order numerical methods will soon become the standard in simulation software.
加拿大是世界上最大的水电和风能生产国之一。优化设计的船舶和风力涡轮机叶片可以进一步增加这些可再生能源的产量。在过去的世纪里,加拿大发生了200多次洪水,夺走了许多人的生命,造成了数十亿美元的损失。准确预测河流泛滥时的洪泛平原可能会防止生命损失,并有助于保护加拿大的家庭和企业。这只是计算机模拟工具的两个应用程序。然而,这些模拟工具的成功取决于实现的算法。在这个项目中,我们将开发新的算法,更有效,更准确的模拟工具。最近,我们介绍了一类新的高阶精度算法的流体流动的域与小变形。这一类有可能比许多其他数值方法更准确,更有效。然而,许多流动模拟需要能够科普具有大变形的域上的流体流动的算法。这种大变形的示例包括:拓扑变化,其中域可以分裂成几个子域(例如沸腾过程中气泡的聚结和破裂)和围绕旋转部件的流动(例如,在船舶或风力涡轮机的设计中)。所提出的研究的首要目标是开发用于模拟具有大变形的域上的流体流动所需的方法,建立在我们的高阶精确算法。拟议的研究有利于加拿大开发算法的下一代仿真工具。这些工具将能够模拟工业、环境和社会中各种各样的流动。这些应用可能包括:通过设计最佳的海洋和风力涡轮机叶片来增加可再生能源的生产;预测由于大量降雨或融雪径流造成河流泛滥时的洪泛平原;预测人工心脏瓣膜中的血流。此外,拟议的研究将培养具有开发和实施精确数值方法所需关键技能的高素质人才。这种技能组合是必不可少的软件开发在加拿大,因为它被广泛认为,高阶数值方法将很快成为模拟软件的标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rhebergen, Sander其他文献
In silico analysis of hypoxia activated prodrugs in combination with anti angiogenic therapy through nanocell delivery
- DOI:
10.1371/journal.pcbi.1007926 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:4.3
- 作者:
Meaney, Cameron;Rhebergen, Sander;Kohandel, Mohammad - 通讯作者:
Kohandel, Mohammad
Hybridizable discontinuous Galerkin methods for the coupled Stokes–Biot problem
耦合 Stokes Biot 问题的可杂交间断 Galerkin 方法
- DOI:
10.1016/j.camwa.2023.05.024 - 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
Cesmelioglu, Aycil;Lee, Jeonghun J.;Rhebergen, Sander - 通讯作者:
Rhebergen, Sander
A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations
- DOI:
10.1016/j.jcp.2012.08.052 - 发表时间:
2013-01-15 - 期刊:
- 影响因子:4.1
- 作者:
Rhebergen, Sander;Cockburn, Bernardo;van der Vegt, Jaap J. W. - 通讯作者:
van der Vegt, Jaap J. W.
Rhebergen, Sander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rhebergen, Sander', 18)}}的其他基金
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
478018-2015 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
478018-2015 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
RGPIN-2015-05606 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
- 批准号:
478018-2015 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of nucleosome architecture in cellular reprogramming
核小体结构在细胞重编程中的作用
- 批准号:
10567857 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Studying semantic processing during language comprehension in humans at the single-cellular level
在单细胞水平上研究人类语言理解过程中的语义处理
- 批准号:
10280022 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Screening, Tracking and Treatment for Anxiety and Depression in Community Colleges
社区大学焦虑症和抑郁症的筛查、跟踪和治疗
- 批准号:
10615195 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Integrative transcriptomics to uncover functional elements and disease-associated variants in RNA
整合转录组学揭示 RNA 中的功能元件和疾病相关变异
- 批准号:
10707989 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Screening, Tracking and Treatment for Anxiety and Depression in Community Colleges
社区大学焦虑症和抑郁症的筛查、跟踪和治疗
- 批准号:
10406817 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Studying semantic processing during language comprehension in humans at the single-cellular level
在单细胞水平上研究人类语言理解过程中的语义处理
- 批准号:
10591471 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Statistical methods for higher order dependences to understand protein functions
用于了解蛋白质功能的高阶依赖性统计方法
- 批准号:
10492723 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Outpatient Screening for Early-Stage High-Grade Serous Ovarian Cancer in Higher Risk Women
高危女性早期高级别浆液性卵巢癌的门诊筛查
- 批准号:
10325175 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Quantum programming and algorithms based on higher-order quantum operations
基于高阶量子运算的量子编程和算法
- 批准号:
21H03394 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical methods for higher order dependences to understand protein functions
用于了解蛋白质功能的高阶依赖性统计方法
- 批准号:
10378307 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别: