Recovery pathways for lake ecosystems

湖泊生态系统的恢复途径

基本信息

  • 批准号:
    NE/X014150/1
  • 负责人:
  • 金额:
    $ 103.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Global water demand has increased by 600% over the past 100 years and is predicted to grow significantly over the next few decades. Under current and future scenarios, aquatic ecosystems are under threat from multiple pressures, most notably human population growth with its often-conflicting demands for water, food and energy security, leading to declining freshwater quantity and quality. More than 30% of global biodiversity loss is due to pollution of water resources and aquatic ecosystems. Here, we focus on the contribution these challenges are having on freshwater lakes, where nutrient enrichment has been recognised as the key pressure. Across the world, increasing numbers of lakes are collapsing into polluted states. For example, in 2005, all 14,000 UK lakes >1 ha in size were risk-assessed for ecological status, of which over half failed the 'good' threshold, being judged at risk and likely to require some remediation. Most recently, in 2020, new data from the Environment Agency revealed that only 14% of lakes were classed as in good ecological health in England. Concomitantly, in a study of 273 Chinese lakes, amongst those with human impacts, only 22% showed relatively stable and resilient states. It is clear that such trajectories are unsustainable in terms of global freshwater use and functioning. Many countries have recognised the urgency of the problem, and are enacting local and global policies (e.g. EU, UN) for freshwater lake restoration. Despite substantial investment, current restoration projects are often based on short-term assumptions, and hence can fail due to the lack of knowledge of mid- to long-term recovery pathways after system collapse.Our project addresses this challenge, to deliver a step change in our understanding of pathways to lake ecosystem recovery. Much of the difficulty in restoring lake ecosystems to 'good' (resilient) clear water states is due to hysteresis (the dependence of the state of a system on its history), keeping the unwanted turbid (polluted) state dominant by recycling of nutrients without any further additions. Consequently, simply removing the pollutant source (when possible or desirable) does not necessarily lead to lake ecosystem recovery. Our project will tackle this challenge by quantifying the balance of factors that influence the recovery of freshwater lake ecosystems from undesirable states. While controls on nutrients (diffuse and/or point-source) are often critical, the recycling rates, and internal feedback loops, in addition to other multidimensional stressors such as climate change, can also be important factors to consider. In our project, we will review current global lake datasets, and undertake detailed empirical work on a subset of lakes that have undergone full or partial recovery. In both datasets (i.e. global lakes, and our subset with new empirical analyses across all trophic levels), we will use newly developed indicators of ecological structure to assess which recovery pathway lakes can take (i.e. linear, step change, or hysteretic), and how long such recovery may take. We will use this knowledge to build systems-based models that can simulate the multidimensional causes of lake degradation, ecosystem collapse, and recoveries in a range of freshwater lake systems. The models will be able to simulate different future lake states, depending on inputs and associated management decisions. We will work with a wide range of stakeholders to run and test the models, so that ultimately, we can determine the best course of action for recovery with minimal hysteresis.In summary, the step-change outcome of our project will be an ability to model an improved prediction of different lake recovery pathways, the relative roles of differing driver combinations, and respondent ecosystem trophic level and overall resilience. Our project will contribute to meeting one of the major challenges facing humanity: the sustainable management of Earth's freshwater resources.
在过去的100年里,全球水需求量增加了600%,预计在未来几十年内将大幅增长。在当前和未来的情况下,水生态系统受到多重压力的威胁,最明显的是人口增长与其对水、粮食和能源安全的需求往往相互冲突,导致淡水数量和质量下降。全球30%以上的生物多样性丧失是由于水资源和水生生态系统的污染。在这里,我们重点关注这些挑战对淡水湖泊的贡献,其中营养物富集被认为是关键压力。在世界各地,越来越多的湖泊正在崩溃成为污染状态。例如,2005年,对英国所有14,000个面积大于1公顷的湖泊进行了生态状况风险评估,其中一半以上未达到“良好”门槛,被判定为存在风险,可能需要采取一些补救措施。最近,在2020年,环境署的新数据显示,英格兰只有14%的湖泊被归类为良好的生态健康。与此同时,在一项对273个中国湖泊的研究中,在受到人类影响的湖泊中,只有22%表现出相对稳定和恢复能力。显然,从全球淡水使用和功能的角度来看,这种发展轨迹是不可持续的。许多国家已经认识到问题的紧迫性,并正在制定当地和全球政策(如欧盟,联合国)淡水湖恢复。尽管有大量的投资,目前的恢复项目往往是基于短期的假设,因此可能会失败,由于缺乏知识的中长期恢复途径后,系统崩溃。我们的项目解决了这一挑战,提供一个步骤的变化,我们的理解路径湖泊生态系统恢复。将湖泊生态系统恢复到“良好”(有弹性)的清水状态的大部分困难是由于滞后(系统的状态依赖于其历史),通过营养物的再循环而保持不必要的浑浊(污染)状态占主导地位,而没有任何进一步的添加。因此,简单地消除污染源(在可能或可取的情况下)并不一定会导致湖泊生态系统的恢复。我们的项目将通过量化影响淡水湖生态系统从不良状态恢复的因素的平衡来应对这一挑战。虽然对营养物(扩散和/或点源)的控制往往至关重要,但再循环率和内部反馈回路,以及气候变化等其他多维压力因素,也可能是需要考虑的重要因素。在我们的项目中,我们将回顾当前的全球湖泊数据集,并对已经完全或部分恢复的湖泊子集进行详细的实证研究。在这两个数据集(即全球湖泊,以及我们在所有营养水平上进行新的经验分析的子集)中,我们将使用新开发的生态结构指标来评估湖泊可以采取哪些恢复途径(即线性,阶跃变化或滞后),以及这种恢复可能需要多长时间。我们将利用这些知识来建立基于系统的模型,可以模拟湖泊退化,生态系统崩溃和淡水湖系统范围内的恢复的多维原因。这些模型将能够模拟未来不同的湖泊状态,这取决于投入和相关的管理决策。我们将与广泛的利益相关者合作运行和测试模型,以便最终确定最佳的行动方案,以最小的滞后恢复。总之,我们项目的阶跃变化结果将是能够模拟不同湖泊恢复路径的改进预测,不同驱动力组合的相对作用,以及响应生态系统营养水平和整体恢复力。我们的项目将有助于应对人类面临的主要挑战之一:地球淡水资源的可持续管理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Langdon其他文献

1981 TEN YEAR RE-TREATMENT RATE FOR TRANSURETHRAL INCISION OF THE PROSTATE
  • DOI:
    10.1016/j.juro.2012.02.2141
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ahmed Saeed Goolam;Philip J. Bergersen;Thomas Dean;Peter Langdon;Henry Woo
  • 通讯作者:
    Henry Woo

Peter Langdon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Langdon', 18)}}的其他基金

Pinpointing abrupt climate change in Patagonia using tephrochronology and improved age modelling
使用年代学和改进的年龄模型精确定位巴塔哥尼亚的气候突变
  • 批准号:
    NE/G010684/1
  • 财政年份:
    2009
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Research Grant
Can radiocarbon dating chironomid head capsules increase chronological accuracy in lake sediments?
放射性碳测年摇蚊头胶囊能否提高湖泊沉积物的年代准确性?
  • 批准号:
    NE/D007828/1
  • 财政年份:
    2006
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Research Grant

相似国自然基金

4-半乳糖基转移酶调控肝内胆管癌发生的机制研究
  • 批准号:
    2024JJ5284
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
StPSR1基因调控马铃薯块茎发育的机制初探
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
水稻条斑病细菌hrp调控系统对致病性效应分子调控的分子机理
  • 批准号:
    30370926
  • 批准年份:
    2003
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Should infant formula be available at UK food banks? Evaluating different pathways to ensuring parents in financial crisis can access infant formula.
英国食品银行应该提供婴儿配方奶粉吗?
  • 批准号:
    MR/Z503575/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Research Grant
Resilient and Equitable Nature-based Pathways in Southern African Rangelands (REPAiR)
南部非洲牧场弹性且公平的基于自然的途径 (REPAiR)
  • 批准号:
    NE/Z503459/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Research Grant
Building Credentialed Media Technology Pathways for Priority Populations from High School through Community Colleges to Industry (MTP3)
为从高中到社区大学再到工业界的优先人群建立认证媒体技术途径 (MTP3)
  • 批准号:
    2400610
  • 财政年份:
    2024
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Standard Grant
CAREER: Measurement of Photochemical Mechanisms, Rates, and Pathways of Radical Formation in Complex Organic Compounds
职业:测量复杂有机化合物中自由基形成的光化学机制、速率和途径
  • 批准号:
    2340926
  • 财政年份:
    2024
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Continuing Grant
CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
  • 批准号:
    2340743
  • 财政年份:
    2024
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Continuing Grant
Louis Stokes STEM Pathways and Research Alliance: North Star STEM Alliance (NSSA)
Louis Stokes STEM 途径和研究联盟:北极星 STEM 联盟 (NSSA)
  • 批准号:
    2409134
  • 财政年份:
    2024
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Continuing Grant
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Continuing Grant
Channeling Excited States Towards New Productive Photochemical Pathways
将激发态引导至新的高效光化学途径
  • 批准号:
    2350308
  • 财政年份:
    2024
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Standard Grant
Equitable Pathways to Artificial Intelligence
通往人工智能的公平途径
  • 批准号:
    2400905
  • 财政年份:
    2024
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333683
  • 财政年份:
    2024
  • 资助金额:
    $ 103.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了