Identifying novel microbial drivers to mitigate atmospheric methane emission

识别新的微生物驱动因素以减少大气甲烷排放

基本信息

  • 批准号:
    NE/X014398/1
  • 负责人:
  • 金额:
    $ 73.22万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Climate change is one of the greatest challenges facing our world. Methane is a powerful greenhouse gas with a global warming potential 25 times that of CO2. In the recent Climate Change Summit COP26 in 2021, an international pledge was made to urgently cut methane emissions by 30% by 2030. This project will study new microbes capable of consuming methane and generate fundamental scientific knowledge required to take the first steps towards contributing to this goal.Approximately 500-600 million tonnes of methane are emitted into the Earth's atmosphere every year. Methane can be removed by microbes known as methanotrophs. However, we have preliminary data indicating that other, previously unsuspected microbes known as ammonia oxidising archaea may also be able to consume methane in the environment. Ammonia oxidising archaea are among the most numerous living organisms on the planet and play a vital role in the nitrogen cycle. They are responsible for nitrogen loss from agricultural soils, environmental pollution and emission of nitrogen-containing climate-active gases. Ammonia oxidising archaea and methanotrophs both contain a similar enzyme, known as ammonia monooxygenase in archaea and particulate methane monooxygenase in methanotrophs. This is the key enzyme that methanotrophs use to break down methane. Our hypothesis is that archaea can use their ammonia monooxygenase enzyme to break down methane in the environment. Furthermore, we predict that methane will inhibit ammonia oxidation and thus influence nitrogen cycling in the environment. This is important because depending on the environmental conditions, different microbes will be more active than others and this has consequences for the extent of greenhouse gas emission and consumption, and cycling of nutrients. Our research will identify how different environmental conditions affect the contributions of different groups of microorganisms involved in methane removal from the biosphere. Using cutting-edge techniques, this project will link the activity and identity of the microbes responsible for methane consumption in soil. Our study will determine the mechanisms by which ammonia oxidising archaea and other microbes break down methane in soil. Overall, this will help towards predicting how soils respond to environmental changes and has considerable potential to contribute to sustainable management of soil ecosystems.
气候变化是我们世界面临的最大挑战之一。甲烷是一种强大的温室气体,其全球变暖潜力是二氧化碳的25倍。在最近的2021年气候变化峰会COP 26上,国际社会承诺到2030年将甲烷排放量紧急削减30%。该项目将研究能够消耗甲烷的新微生物,并产生为实现这一目标迈出第一步所需的基础科学知识。每年约有5亿至6亿吨甲烷排放到地球大气中。甲烷可以被称为甲烷氧化菌的微生物去除。然而,我们有初步的数据表明,其他以前未被怀疑的微生物,称为氨氧化古菌,也可能能够消耗环境中的甲烷。氨氧化古菌是地球上数量最多的生物体之一,在氮循环中起着至关重要的作用。它们造成农业土壤中的氮流失、环境污染和含氮气候活性气体的排放。氨氧化古细菌和甲烷氧化菌都含有类似的酶,在古细菌中称为氨单加氧酶,在甲烷氧化菌中称为颗粒甲烷单加氧酶。这是甲烷氧化菌用来分解甲烷的关键酶。我们的假设是,古细菌可以使用它们的氨单加氧酶来分解环境中的甲烷。此外,我们预测甲烷会抑制氨氧化,从而影响环境中的氮循环。这一点很重要,因为根据环境条件,不同的微生物会比其他微生物更活跃,这对温室气体排放和消耗的程度以及营养物质的循环都有影响。我们的研究将确定不同的环境条件如何影响参与从生物圈中去除甲烷的不同微生物群体的贡献。利用尖端技术,该项目将把负责土壤中甲烷消耗的微生物的活动和身份联系起来。我们的研究将确定氨氧化古菌和其他微生物分解土壤中甲烷的机制。总体而言,这将有助于预测土壤如何应对环境变化,并有相当大的潜力,以促进土壤生态系统的可持续管理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura Lehtovirta-Morley其他文献

Laura Lehtovirta-Morley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

IDENTIFYING MICROBIAL MECHANISMS THAT REGULATE ANIMAL INSULIN SIGNALING
识别调节动物胰岛素信号传导的微生物机制
  • 批准号:
    10680954
  • 财政年份:
    2023
  • 资助金额:
    $ 73.22万
  • 项目类别:
Early Life Stress and Cardiovascular Disease Risk: Identifying the Role of Microbial Metabolites
早期生活压力和心血管疾病风险:确定微生物代谢物的作用
  • 批准号:
    10739155
  • 财政年份:
    2023
  • 资助金额:
    $ 73.22万
  • 项目类别:
Identifying and evaluating prevention strategies for COVID-19 in correctional facilities
识别和评估惩教设施中的 COVID-19 预防策略
  • 批准号:
    10723881
  • 财政年份:
    2023
  • 资助金额:
    $ 73.22万
  • 项目类别:
Identifying immunoregulatory gut bacteria in type 1 diabetes and autoimmunity
识别 1 型糖尿病和自身免疫性疾病中的免疫调节肠道细菌
  • 批准号:
    10467123
  • 财政年份:
    2022
  • 资助金额:
    $ 73.22万
  • 项目类别:
Identifying Influenza Virus Infection Severity and Outcome Signatures Through Artificial Intelligence-driven Analyses
通过人工智能驱动的分析确定流感病毒感染的严重程度和结果特征
  • 批准号:
    10659219
  • 财政年份:
    2022
  • 资助金额:
    $ 73.22万
  • 项目类别:
Identifying Gut Microbiome Mediated Mechanisms for Diastolic Dysfunction Improvement After Bariatric Surgery
确定肠道微生物介导的减肥手术后改善舒张功能障碍的机制
  • 批准号:
    10626829
  • 财政年份:
    2022
  • 资助金额:
    $ 73.22万
  • 项目类别:
Identifying the role of the gut microbiome in the etiology of benign breast disease
确定肠道微生物组在良性乳腺疾病病因学中的作用
  • 批准号:
    10359959
  • 财政年份:
    2022
  • 资助金额:
    $ 73.22万
  • 项目类别:
Identifying Gut Microbiome Mediated Mechanisms for Diastolic Dysfunction Improvement After Bariatric Surgery
确定肠道微生物介导的减肥手术后改善舒张功能障碍的机制
  • 批准号:
    10442822
  • 财政年份:
    2022
  • 资助金额:
    $ 73.22万
  • 项目类别:
Identifying mucin O-glycans in the regulation of Staphylococcus aureus pathogenesis
鉴定粘蛋白 O-聚糖在金黄色葡萄球菌发病机制中的调节作用
  • 批准号:
    10617215
  • 财政年份:
    2022
  • 资助金额:
    $ 73.22万
  • 项目类别:
Identifying niche specific adaptations in Acinetobacter baumannii
鉴定鲍曼不动杆菌的生态位特异性适应
  • 批准号:
    10596620
  • 财政年份:
    2022
  • 资助金额:
    $ 73.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了