Quantifying the true carbon removal potential of enhanced rock weathering

量化增强岩石风化的真实碳去除潜力

基本信息

  • 批准号:
    NE/Y000471/1
  • 负责人:
  • 金额:
    $ 107.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

To achieve the UN goal of less than 2 degrees of global warming, we need to not only reduce carbon emissions, but actively remove part of the carbon dioxide (CO2) we have added to the atmosphere. For this reason, the UK has committed to actively remove ~50 million tons of CO2 by 2050. While multiple solutions have been proposed to achieve this, only a handful can be applied at scales large enough to meaningfully contribute to climate mitigation. One of those solutions is the acceleration of silicate rock weathering (also called Enhanced Rock Weathering - ERW), which theoretically could globally remove ~10% of our annual carbon emissions. CO2 dissolves in water and then reacts with silicate rocks. The weathering products are then transported through streams and rivers to the ocean, where the carbon is locked away for thousands of years. This reaction actively removes carbon from the atmosphere, and at the same time it releases minerals that can benefit plants. In nature the process is very slow but can be sped up by simply crushing those rocks into a fine dust, which could be distributed by existing farming equipment at global scales. Despite the promise of ERW for climate mitigation, there are very few large-scale experiments which have demonstrated its efficacy, and non-target effects of rock dust on soils and fresh waters are not well known. In fact, all the weathering products, as they are transported via water in the soils and in the rivers, can interact with the soil itself, with plants, and with microorganisms living in soils and river water. This interaction may reduce the efficiency of ERW by orders of magnitude, casting doubt on its implementation as a global negative emission technology. Moreover, organisms at the basis of land and water food webs - plants and microbes - may be impacted by the side effects of ERW application. However, we lack the necessary interdisciplinary knowledge from soil and aquatic biogeochemistry, ecology and hydrology to fully understand and predict the efficiency of ERW. In this project we assemble a team of experts from all the aforementioned scientific disciplines to provide a complete understanding of the process of ERW, from the application of silicate rock dust until the weathering products reach the oceans. To achieve that, we will combine interdisciplinary experimental techniques, state of the art research infrastructure, and computational modelling. First, we will provide new fundamental knowledge on how the rock weathering process and the different weathering products affect and are affected by plants and soil microbes. An experiment that will disentangle the impacts of soils, plants and microbes will be conducted at Imperial College London. Then, we will provide fundamental knowledge on how the weathering products interact with river waters and the microorganisms living in them. To do that an experiment that disentangles the effects of river water chemistry, river flow dynamics, and aquatic microorganisms will be conducted at state-of-the art research facilities at the University of Birmingham. We will then generalize the new knowledge from the laboratory to the real world, by performing a full-scale field trial of ERW and monitoring all aspects of its efficiency in a Welsh forest. Finally, we will integrate all the new knowledge into an advanced ecohydrological model that can be used to predict the carbon removal efficiency at the catchment scale. The final deliverable of the project will be an assessment of ERW's potential to remove CO2 in the UK, and whether it can significantly contribute towards the country's climate goals, and tools that can be used by stakeholders to credibly assess the carbon removal efficiency of ERW. This will be an essential resource for state decision makers, in charge of meeting a county's negative emission goals, and the carbon industry.
为了实现联合国将全球变暖控制在2度以内的目标,我们不仅需要减少碳排放,还需要积极消除我们向大气中添加的部分二氧化碳。为此,英国已承诺到2050年积极减排约5000万吨二氧化碳。虽然为实现这一目标提出了多种解决办法,但只有少数办法能够大规模应用,为减缓气候变化作出有意义的贡献。其中一个解决方案是加速硅酸盐岩石风化(也称为增强岩石风化- ERW),理论上可以在全球范围内减少约10%的年碳排放量。二氧化碳溶于水,然后与硅酸盐岩石发生反应。然后,风化产物通过溪流和河流进入海洋,碳在那里被锁住数千年。这种反应积极地从大气中去除碳,同时释放出有益于植物的矿物质。在自然界中,这个过程非常缓慢,但只要把这些岩石压碎成细小的灰尘,就可以加快速度,这些灰尘可以通过现有的农业设备在全球范围内传播。尽管战争遗留爆炸物有望缓解气候变化,但证明其有效性的大规模实验很少,而且岩石粉尘对土壤和淡水的非目标效应也不为人所知。事实上,所有的风化产物,当它们通过土壤和河流中的水运输时,可以与土壤本身,植物以及生活在土壤和河水中的微生物相互作用。这种相互作用可能会将战争遗留爆炸物的效率降低几个数量级,使人们对其作为一项全球负排放技术的实施产生怀疑。此外,作为陆地和水食物网基础的生物——植物和微生物——可能受到战争遗留爆炸物应用的副作用的影响。然而,我们缺乏从土壤和水生生物地球化学、生态学和水文学等跨学科的知识来充分了解和预测ERW的效率。在这个项目中,我们召集了来自上述所有科学学科的专家团队,提供了一个完整的了解战争遗留爆炸物的过程,从硅酸盐岩石粉尘的应用到风化产物到达海洋。为了实现这一目标,我们将结合跨学科的实验技术、最先进的研究基础设施和计算建模。首先,我们将提供关于岩石风化过程和不同风化产物如何影响和受植物和土壤微生物影响的新的基础知识。一项将解开土壤、植物和微生物影响的实验将在伦敦帝国理工学院进行。然后,我们将提供关于风化产物如何与河水和生活在其中的微生物相互作用的基本知识。为了做到这一点,将在伯明翰大学最先进的研究设施中进行一项实验,该实验将解开河流水化学、河流流动动力学和水生微生物的影响。然后,我们将把新知识从实验室推广到现实世界,对战争遗留爆炸物进行全面的实地试验,并在威尔士森林中监测其效率的各个方面。最后,我们将把所有的新知识整合到一个先进的生态水文模型中,该模型可用于预测集水区尺度上的碳去除效率。该项目的最终成果将是评估剩余物在英国去除二氧化碳的潜力,以及它是否能为该国的气候目标做出重大贡献,以及利益相关者可以使用的工具,以可靠地评估剩余物的碳去除效率。对于负责实现一个县的负排放目标的国家决策者和碳行业来说,这将是一个重要的资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Athanasios Paschalis其他文献

Microscale to neighbourhood scale: Impact of shading on urban climate
从微观尺度到街区尺度:遮阳对城市气候的影响
  • DOI:
    10.1016/j.buildenv.2025.112721
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Christopher Wilson;Jonathan K.P. Shonk;Sylvia I. Bohnenstengel;Athanasios Paschalis;Maarten van Reeuwijk
  • 通讯作者:
    Maarten van Reeuwijk

Athanasios Paschalis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

靶点重定向通用型TRUE-CAR-T治疗三阴性乳腺癌新模式的建立及评价
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Achieving true representation of Indigenous people in nursing and midwifery
在护理和助产方面实现原住民的真实代表
  • 批准号:
    IN230100003
  • 财政年份:
    2024
  • 资助金额:
    $ 107.08万
  • 项目类别:
    Discovery Indigenous
True-Triaxial-Teststand
真三轴试验台
  • 批准号:
    517355494
  • 财政年份:
    2023
  • 资助金额:
    $ 107.08万
  • 项目类别:
    Major Research Instrumentation
Using AI to reveal the true extent & context of alcohol exposure in videos
利用人工智能揭示真实范围
  • 批准号:
    DP230100927
  • 财政年份:
    2023
  • 资助金额:
    $ 107.08万
  • 项目类别:
    Discovery Projects
Collaborative Research: Late Cretaceous - early Cenozoic paleolatitude of the Walvis Ridge hotspot: Implications for true polar wander and hotspot geodynamics
合作研究:白垩纪晚期 - 新生代早期沃尔维斯海岭热点的古纬度:对真正的极地漂移和热点地球动力学的影响
  • 批准号:
    2232970
  • 财政年份:
    2023
  • 资助金额:
    $ 107.08万
  • 项目类别:
    Standard Grant
多発性骨髄腫治療用sgRNA薬候補の作用機構の解明
阐明sgRNA候选药物治疗多发性骨髓瘤的作用机制
  • 批准号:
    23K06752
  • 财政年份:
    2023
  • 资助金额:
    $ 107.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A REV come true? Designing and evaluating a major cycling and walking network expansion for health and equity
REV 成真了吗?
  • 批准号:
    487917
  • 财政年份:
    2023
  • 资助金额:
    $ 107.08万
  • 项目类别:
    Miscellaneous Programs
Development of G4-targeting artificial nucleases for analysis of true G-quadruplex formation sequences on the human genome
开发 G4 靶向人工核酸酶,用于分析人类基因组上真正的 G-四链体形成序列
  • 批准号:
    23H01988
  • 财政年份:
    2023
  • 资助金额:
    $ 107.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MWQD - Realising the true potential of Mid-Wave Infrared Sensors by improving affordability and adoption via Quantum Dot technology
MWQD - 通过量子点技术提高可承受性和采用率,实现中波红外传感器的真正潜力
  • 批准号:
    10066153
  • 财政年份:
    2023
  • 资助金额:
    $ 107.08万
  • 项目类别:
    Collaborative R&D
4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
  • 批准号:
    10735953
  • 财政年份:
    2023
  • 资助金额:
    $ 107.08万
  • 项目类别:
True Computational Bio-Mimetics Explored by Multi-Physics Coupling Simulation for Both Free Flight and Intelligence in Insects
通过多物理耦合模拟探索真正的计算仿生学,以实现昆虫的自由飞行和智能
  • 批准号:
    23H00475
  • 财政年份:
    2023
  • 资助金额:
    $ 107.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了