STRUCTURE AND STABILIZATION OF THE BACTERIAL NUCLEOID

细菌核的结构和稳定性

基本信息

项目摘要

The structure of the bacterial nucleoid and the forces which maintain its DNA in a highly compact yet accessible form are largely unknown. We have been systematically characterizing spermidine nucleoids isolated from E. coli under relatively non-denaturing conditions as an approach to these problems. The isolated nucleoids have multiple restraints to DNA unfolding; each restraint is characterized by a urea concentration giving 50% unfolding (Um value) and by the effects of various agents, particularly exogenous RNase. An RNase-sensitive restraint to DNA unfolding with Um=3.2 M urea and an RNase-resistant restraint with Um=1.8 M urea have been partially characterized. The RNase-sensitive restraint appears to be actual linkages between nucleoidal DNA and residual cell envelope which result from cotranslational insertion that occurred in the cells from which the nucleoids were isolated. Such linkages would have the following connections: DNA - RNA polymerase - mRNA - ribosomes - nascent polypeptide - residual cell membrane. Support for such a basis for the RNase-sensitive unfolding at 3.2 M urea comes from 1) effects on the stability of isolated nucleoids resulting from preexposures of cells to antibiotics; antibiotics which specifically inhibit protein or RNA syntheses caused large changes in Um values that were consistent with the proposed linkages; 2) destruction of one component of the linkage, the ribosomes, occurred at ca. 3 M urea in both isolated nucleoids and purified ribosome preparations; the ribosomes may be the specific target removed at this urea concentration; 3) the high sensitivity of nucleoidal mRNA to RNase; 4) retention of the RNase-sensitive unfolding at 3 M urea, despite removal of most DNA-binding proteins (except RNA polymerase) by salt extractions, indicating that the conventional model for DNA compaction by protein binding is not controlling the unfolding at 3 M urea. The other restraint studied, the RNase-resistant restraint, was destroyed by extended treatment of isolated nucleoids with muramidases, indicating a relation to residual murein. - antibiotics,DNA,Escherichia coli,nucleoids,proteins,RNA,urea
细菌类核的结构和维持其DNA处于高度紧凑但可接近的形式的力量在很大程度上是未知的。我们对从大肠杆菌中分离的亚精胺类核进行了系统的表征。大肠杆菌在相对非变性条件下作为解决这些问题的方法。分离的类核苷对DNA解折叠有多种抑制作用;每种抑制作用的特征是产生50%解折叠的尿素浓度(Um值)以及各种试剂(特别是外源RNA酶)的影响。RNA酶敏感的约束DNA展开与Um=3.2 M尿素和RNA酶抗性约束与Um=1.8 M尿素已部分表征。RNA酶敏感性抑制似乎是类核DNA和残留细胞包膜之间的实际连接,这是由分离类核的细胞中发生的共翻译插入引起的。这种连接有以下的联系:DNA-RNA聚合酶- mRNA -核糖体-新生多肽-残留的细胞膜.支持在3.2 M尿素下RNA酶敏感性解折叠的这种基础来自:1)细胞预暴露于抗生素对分离的类核稳定性的影响;特异性抑制蛋白质或RNA合成的抗生素引起Um值的巨大变化,这与所提出的连接一致; 2)连接的一个组分,核糖体,在约100 ℃时发生破坏。在分离的类核和纯化的核糖体制备物中均存在3 M尿素,核糖体可能是在此尿素浓度下去除的特异性靶点:3)类核mRNA对RNase的高敏感性; 4)尽管去除了大多数DNA结合蛋白,但在3 M尿素下保留RNA酶敏感性解折叠(除了RNA聚合酶),表明通过蛋白质结合的DNA压缩的常规模型在3 M尿素下不控制解折叠。研究的其他约束,RNase抗性约束,被破坏的分离的类核苷酸与溶菌酶的延长治疗,表明与残留的胞壁蛋白。- 抗生素,DNA,大肠杆菌,类核,蛋白质,RNA,尿素

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEVEN B ZIMMERMAN其他文献

STEVEN B ZIMMERMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEVEN B ZIMMERMAN', 18)}}的其他基金

Structure and Stabilization of the Bacterial Nucleoid
细菌核的结构和稳定性
  • 批准号:
    6105333
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Bacterial DNA as a Diagnostic Biomarker of Hepatocellular Carcinoma
细菌 DNA 作为肝细胞癌的诊断生物标志物
  • 批准号:
    10557105
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Structure and mechanism of bacterial DNA repair pathways
细菌DNA修复途径的结构和机制
  • 批准号:
    RGPIN-2018-05490
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Understanding bacterial DNA gyrase for the development of novel antibiotics
了解细菌 DNA 旋转酶以开发新型抗生素
  • 批准号:
    2740525
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Bacterial DNA as a Diagnostic Biomarker of Hepatocellular Carcinoma
细菌 DNA 作为肝细胞癌的诊断生物标志物
  • 批准号:
    10357369
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of a novel diagnostic biomaker for renal cell carcinoma using bacterial DNA in urinary extracellular vesicles.
利用尿细胞外囊泡中的细菌 DNA 开发一种新型肾细胞癌诊断生物标记物。
  • 批准号:
    21K20988
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Structure and mechanism of bacterial DNA repair pathways
细菌DNA修复途径的结构和机制
  • 批准号:
    RGPIN-2018-05490
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Regulation of bacterial DNA transposition
细菌 DNA 转座的调控
  • 批准号:
    RGPIN-2016-04753
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
16S rRNA gene sequencing-based exploring bacterial DNA markers for the identification of forensically relevant body fluids from degraded samples
基于 16S rRNA 基因测序的探索细菌 DNA 标记,用于从降解样品中鉴定法医相关体液
  • 批准号:
    21K21033
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Investigating molecular condensates at the bacterial DNA replication fork
研究细菌 DNA 复制叉处的分子凝聚体
  • 批准号:
    562379-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Molecular mechanisms of bacterial DNA double-strand break repair
细菌DNA双链断裂修复的分子机制
  • 批准号:
    450876
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了