Precision cosmology from early and late-time surveys.

来自早期和晚期调查的精确宇宙学。

基本信息

  • 批准号:
    ST/M004856/1
  • 负责人:
  • 金额:
    $ 58.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The cosmological quest is mainly fed by the curiosity to know how things started and evolved in time, which particular process led to the objects we see in the sky (e.g., galaxies and clusters of galaxies), where they come from and why they are moving away from us. A key aspect of physics of the early Universe is the theory and the observation of the cosmic microwave background radiation (CMB) temperature fluctuations and polarisation. The use of the CMB to study the particle and energy content of the Universe as well as its evolution is a remarkable success of modern cosmology. The CMB is the most ancient light we can observe in the Universe. It was born in the early Universe a few seconds after the Big Bang and thermalised in the primordial 'cosmic soup' where the high Universe temperature coupled light together with other particles. It then decoupled and was released when the Universe cooled down and the first light elements started to form (e.g., hydrogen and helium), leaving CMB photons free to escape. The CMB then provides us with a snapshot and unique view of the transparent Universe. It has been free to travel from the decoupling moment to today and it reaches us as a faint radiation with microwave wavelengths. The way it propagates and its statistical properties inform us about the physics of the early Universe (looking back in time from decoupling) and describes its particle/energy content and evolution (looking forward in time from decoupling). The statistics of the CMB temperature variations have now been measured with extreme precision over a broad range of scales, leading to a concordance standard model of cosmology. However, the standard cosmological model arising today relies on observational evidence for components and processes with unknown theoretical interpretation. We measure that 95% of the Universe is dominated by 'dark' components but we don't know yet what their nature is. We call 'dark matter' the component responsible for the galaxies formation and 'dark energy' the force opposing gravity and driving the Universe in an accelerating expansion, all this assuming that the laws of gravity are correct on all scales. We also need to invoke a super-luminal expansion in the first fraction of a second after the Big Bang to account for the homogeneity of the Universe on cosmic scales and its flatness. In the last ten years CMB data has become the most competitive and tantalising source of information to address these open theoretical issues. My project relies on two kinds of observations complementing current data in the next decade: improved measurement of CMB polarisation and the measurement of galaxies statistics and distribution on the largest physical scales (e.g., galaxy clusters, voids, filaments, bubbles) over a broad cosmic epoch. At the end of 2013 and early 2014 the new measurements of CMB polarisation from gound-based experiments have kicked off a new era in CMB physics. CMB polarisation will inform our understanding of the brief expansion phase of the early Universe (called cosmic inflation), probing high energy scales not testable in laboratories, and will map the gravitational potential field defining the geometry, evolution and content of the Universe. CMB polarisation is particularly effective for studying the masses of primordial neutrinos, still unmeasured today. Current and future probes of the Universe large-scale structure, via galaxy surveys, will be instead effective in characterising the dark sector and testing the gravity laws on cosmic scales. The combination of CMB and galaxy surveys will increase the fidelity of the cosmological reconstructions, reducing systematics and probing many cosmic epochs (the CMB gives us a snapshot of a ~400,000 years old Universe while galaxy surveys probe the last 10 billion years).
宇宙学的探索主要是好奇心,想知道事物是如何开始和演化的,是哪个特定的过程导致了我们在天空中看到的物体(例如,星系和星系团),它们从哪里来,为什么远离我们。早期宇宙物理学的一个关键方面是宇宙微波背景辐射(CMB)温度波动和偏振的理论和观测。利用宇宙微波背景来研究宇宙的粒子和能量含量以及它的演化是现代宇宙学的一个显著成功。CMB是我们在宇宙中能观察到的最古老的光。它诞生于宇宙大爆炸后几秒钟的早期宇宙,并在原始的“宇宙汤”中热化,在那里,高宇宙温度将光与其他粒子耦合在一起。然后,当宇宙冷却下来,第一个轻元素开始形成时,它被释放出来(例如,氢和氦),留下CMB光子自由逃逸。然后CMB为我们提供了透明宇宙的快照和独特视图。从退耦时刻到今天,它一直在自由传播,并以微波波长的微弱辐射到达我们。它的传播方式和统计性质告诉我们早期宇宙的物理学(从退耦的时间回顾),并描述了它的粒子/能量含量和演化(从退耦的时间展望)。宇宙微波背景辐射温度变化的统计数据现在已经在很宽的尺度范围内得到了极其精确的测量,从而形成了一个和谐的宇宙学标准模型。然而,今天出现的标准宇宙学模型依赖于未知理论解释的组分和过程的观测证据。我们测量到95%的宇宙是由“黑暗”成分主导的,但我们还不知道它们的性质是什么。我们称“暗物质”为负责星系形成的成分,“暗能量”为对抗引力并推动宇宙加速膨胀的力量,所有这些都假设引力定律在所有尺度上都是正确的。我们还需要在大爆炸后的最初几分之一秒内引发超光速膨胀,以解释宇宙在宇宙尺度上的均匀性及其平坦性。在过去的十年中,CMB数据已经成为解决这些开放理论问题的最具竞争力和最诱人的信息来源。我的项目依赖于两种观测来补充未来十年的现有数据:改进CMB偏振测量和测量最大物理尺度上的星系统计和分布(例如,星系团、空洞、细丝、气泡)。在2013年底和2014年初,来自基于地球的实验的CMB偏振的新测量开启了CMB物理学的新时代。CMB极化将为我们了解早期宇宙的短暂膨胀阶段(称为宇宙膨胀)提供信息,探测实验室无法测试的高能尺度,并将绘制定义宇宙几何,演化和内容的引力势场。CMB极化对于研究原始中微子的质量特别有效,至今仍未测量。目前和未来的宇宙大尺度结构探测,通过星系调查,将有效地描述暗区和测试宇宙尺度上的引力定律。CMB和星系巡天的结合将增加宇宙学重建的保真度,减少系统性并探测许多宇宙时代(CMB为我们提供了一个约40万年前宇宙的快照,而星系巡天探测了过去的100亿年)。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Planck 2016 intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
普朗克 2016 年中间结果。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collaboration P
  • 通讯作者:
    Collaboration P
Planck intermediate results LII. Planet flux densities
  • DOI:
    10.1051/0004-6361/201630311
  • 发表时间:
    2017-11-27
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Akrami, Y.;Ashdown, M.;Zacchei, A.
  • 通讯作者:
    Zacchei, A.
Survey strategy optimization for the Atacama Cosmology Telescope
阿塔卡马宇宙学望远镜巡天策略优化
  • DOI:
    10.1117/12.2232824
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    De Bernardis - For The ACT Collaboration F
  • 通讯作者:
    De Bernardis - For The ACT Collaboration F
Planck intermediate results. L. Evidence for spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB $B$-mode analysis
普朗克中间结果。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collaboration P
  • 通讯作者:
    Collaboration P
Ultra-light dark matter in ultra-faint dwarf galaxies
超微弱矮星系中的超轻暗物质
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erminia Calabrese其他文献

A halo model approach to describe clustering and emission of the two main star forming galaxy populations for Cosmic Infrared Background studies
用于描述宇宙红外背景研究中两个主要恒星形成星系群的聚类和发射的光晕模型方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giorgia Zagatti;Erminia Calabrese;C. Chiocchetta;M. Gerbino;M. Negrello;Luca Pagano
  • 通讯作者:
    Luca Pagano

Erminia Calabrese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erminia Calabrese', 18)}}的其他基金

SO:UK - A major UK contribution to Simons Observatory
SO:UK - 英国对西蒙斯天文台的重大贡献
  • 批准号:
    ST/X006360/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Research Grant
SO:UK - A major UK contribution to the Simons Observatory
SO:UK - 英国对西蒙斯天文台的重大贡献
  • 批准号:
    ST/W002892/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Research Grant
Simons Observatory: UK technology development and demonstration
西蒙斯天文台:英国技术开发与示范
  • 批准号:
    ST/X006352/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Research Grant
Precision cosmology from early and late-time surveys.
来自早期和晚期调查的精确宇宙学。
  • 批准号:
    ST/M004856/2
  • 财政年份:
    2017
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Fellowship

相似海外基金

The Cosmology of the Early and Late Universe
早期和晚期宇宙的宇宙学
  • 批准号:
    ST/X000672/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Research Grant
Consortium for Fundamental Physics - Particle Cosmology and Fundamental Physics: From the Early to the Present Universe
基础物理联盟 - 粒子宇宙学和基础物理:从早期到现在的宇宙
  • 批准号:
    ST/X000621/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Research Grant
Quantum Gravity and Quantum Information in Cosmology: Holographic Entropy in the Late Universe and Planckian Signatures in the Early Universe
宇宙学中的量子引力和量子信息:晚期宇宙的全息熵和早期宇宙的普朗克签名
  • 批准号:
    545750-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Postdoctoral Fellowships
The Physics and Cosmology of Dark Matter, Dark Energy, and the Early Universe
暗物质、暗能量和早期宇宙的物理学和宇宙学
  • 批准号:
    SAPIN-2016-00047
  • 财政年份:
    2021
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Quantum Gravity and Quantum Information in Cosmology: Holographic Entropy in the Late Universe and Planckian Signatures in the Early Universe
宇宙学中的量子引力和量子信息:晚期宇宙的全息熵和早期宇宙的普朗克签名
  • 批准号:
    545750-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Postdoctoral Fellowships
Early and late time cosmology in theories of modified gravity
修正引力理论中的早期和晚期宇宙学
  • 批准号:
    2609790
  • 财政年份:
    2021
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Studentship
Early Islamization of Southeast Asia: Religion, Kingship, and Cosmology
东南亚的早期伊斯兰化:宗教、王权和宇宙论
  • 批准号:
    21H00575
  • 财政年份:
    2021
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modifications of Gravity and Early Universe Cosmology
引力和早期宇宙宇宙学的修正
  • 批准号:
    2609858
  • 财政年份:
    2021
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Studentship
The Cosmology of the Early and Late Universe
早期和晚期宇宙的宇宙学
  • 批准号:
    ST/T000732/1
  • 财政年份:
    2020
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Research Grant
Quantum Gravity and Quantum Information in Cosmology: Holographic Entropy in the Late Universe and Planckian Signatures in the Early Universe
宇宙学中的量子引力和量子信息:晚期宇宙的全息熵和早期宇宙的普朗克签名
  • 批准号:
    545750-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 58.51万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了