High Resolution Fast Detector for Quality Assurance in Proton Beam Therapy

用于质子束治疗质量保证的高分辨率快速检测器

基本信息

  • 批准号:
    ST/N003551/1
  • 负责人:
  • 金额:
    $ 15.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Modern cancer treatment is largely a combination of 3 techniques: surgery, chemotherapy and radiotherapy. Radiotherapy uses beams of X-rays to irradiate the tumour from many different directions. The effect is to kill the cancer by depositing as much radiation dose in the tumour as possible.Proton therapy is a more precise form of radiotherapy that provides significant benefits over conventional X-ray radiotherapy. Protons lose energy - and therefore deposit their dose - in a much smaller region within the body, making the treatment much more precise: this leads to a more effective cancer treatment with a smaller chance of the cancer recurring. This is particularly important in the treatment of deep-lying tumours in the head, neck and central nervous system, particularly for children whose bodies are still developing and are particularly vulnerable to long-term radiation damage.In 2011 the UK government announced funding for 2 full-sized proton therapy centres, to be based at University College Hospital in London and The Christie in Manchester. These will provide treatment for a much wider range of cancers, allowing more patients to be treated closer to home. Procurement for these centres began in 2013, with doors expected to open some time after 2018. Unlike the majority of proton therapy centres worldwide - particularly in the US - the 2 UK centres are publicly funded and will treat some of the most challenging cancers.Treating these cancers requires machinery that is significantly more complex than a conventional radiotherapy system. Protons are accelerated to the right energy for treatment by a particle accelerator: once the beam leaves the accelerator, it then has to be transported to the treatment rooms many metres away by a series of steering and focussing magnets. When the proton beam reaches the treatment room, it has to be delivered through a gantry to the correct place. Proton therapy gantries are enormous - more than 3 storeys tall and weighing more than a hundred tonnes - and have to rotate around the patient to deliver the beam from any angle with millimetre precision.In order to ensure that treatment with such complex machinery is carried out safely, a range of quality assurance (QA) procedures are carried out each day before treatment starts. The majority of this time is spent verifying that the proton beam travels the correct depth and is carried out for several different energies: protons are counted at different depths in a plastic block that resembles human tissue. These energy QA measurements take significant time to set up and adjust for different energies: the full procedure normally takes an hour.This project is looking to develop a detector that will make more accurate and more rapid measurements of the proton energy than existing systems. A calorimeter - used to measure a particle's energy - that was developed for the SuperNEMO high energy physics experiment has been modified to record the energy of a proton therapy treatment beam. This system can measure proton beam energies much more quickly than the existing energy QA technology primarily because it is much simpler. Protons are absorbed by a plastic scintillator that converts the particle energy into light: this light can then be detected to measure the particle energy. By making the scintillator the right size and shape, proton beams over the full range of treatment energies can be measured without having to change anything about the detector system. This would allow the complete morning energy QA procedure to be carried out in a few minutes. At the two UK centres, this would translate into being able to treat an extra 12 patients every single day.In addition, because so much light is produced by protons stopping in the scintillator, the proton energy can be measured to better than 1%. This means that the accuracy of the energy measurement will also be better than the existing technology.
现代癌症治疗主要是3种技术的组合:手术,化疗和放疗。放射疗法使用X射线束从许多不同的方向照射肿瘤。质子治疗是一种更精确的放射疗法,比传统的X射线放射疗法有更大的优势。质子失去能量--因此存款其剂量--在体内一个小得多的区域,使治疗更加精确:这导致更有效的癌症治疗,癌症复发的机会更小。这对于治疗头部、颈部和中枢神经系统的深部肿瘤尤其重要,尤其是对于身体仍处于发育阶段,特别容易受到长期辐射损伤的儿童。2011年,英国政府宣布资助两个全尺寸质子治疗中心,分别位于伦敦的大学学院医院和曼彻斯特的克里斯蒂医院。这些将为更广泛的癌症提供治疗,使更多的患者能够在家附近接受治疗。这些中心的采购始于2013年,预计将在2018年后的某个时候开放。与世界上大多数质子治疗中心不同,特别是在美国,这两个英国中心是由政府资助的,将治疗一些最具挑战性的癌症。治疗这些癌症需要比传统放射治疗系统复杂得多的机器。质子被粒子加速器加速到合适的能量进行治疗:一旦光束离开加速器,它就必须通过一系列转向和聚焦磁铁被运送到数米之外的治疗室。当质子束到达治疗室时,它必须通过机架输送到正确的位置。质子治疗台架非常巨大,有3层楼高,重达100多吨,必须围绕患者旋转,以毫米级的精度从任何角度输送质子束。为了确保使用如此复杂的设备进行治疗的安全性,治疗开始前每天都要进行一系列质量保证(QA)程序。这段时间的大部分时间都花在验证质子束是否行进正确的深度上,并以几种不同的能量进行:在类似于人体组织的塑料块中的不同深度对质子进行计数。这些能量QA测量需要大量的时间来设置和调整不同的能量:整个过程通常需要一个小时。该项目正在寻找开发一种探测器,它将比现有系统更准确,更快速地测量质子能量。为SuperNEMO高能物理实验开发的用于测量粒子能量的量热计已被修改,以记录质子治疗束的能量。该系统可以比现有的能量QA技术更快地测量质子束能量,主要是因为它简单得多。质子被塑料闪烁体吸收,塑料闪烁体将粒子能量转化为光:然后可以检测这种光以测量粒子能量。通过使闪烁体具有正确的尺寸和形状,可以测量整个治疗能量范围内的质子束,而无需改变探测器系统。这将允许在几分钟内进行完整的早晨能量QA程序。在这两个英国中心,这将意味着每天能够多治疗12名患者。此外,由于质子在闪烁体中停留会产生大量的光,因此质子能量可以测量到优于1%。这意味着能量测量的准确性也将优于现有技术。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruben Saakyan其他文献

Ruben Saakyan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruben Saakyan', 18)}}的其他基金

Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
  • 批准号:
    ST/T006439/1
  • 财政年份:
    2021
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Research Grant
SuperNEMO demonstrator module construction.
SuperNEMO 演示模块构建。
  • 批准号:
    ST/H000607/1
  • 财政年份:
    2009
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Research Grant
Studentship for SuperNEMO design study
SuperNEMO 设计研究奖学金
  • 批准号:
    ST/H003975/1
  • 财政年份:
    2009
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Research Grant
Design study of the SuperNEMO experiment
SuperNEMO实验的设计研究
  • 批准号:
    PP/D000521/1
  • 财政年份:
    2006
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Research Grant

相似国自然基金

基于FAST搜寻及观测的脉冲星多波段辐射机制研究
  • 批准号:
    12403046
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
FAST连续观测数据处理的pipeline开发
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于神经网络的FAST馈源融合测量算法研究
  • 批准号:
    12363010
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
使用FAST开展河外中性氢吸收线普查
  • 批准号:
    12373011
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用FAST漂移扫描多科学目标同时巡天宽带谱线数据研究星系中性氢质量函数
  • 批准号:
    12373012
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于FAST望远镜及超级计算的脉冲星深度搜寻和研究
  • 批准号:
    12373109
  • 批准年份:
    2023
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
基于FAST高灵敏度和高谱分辨中性氢数据的暗星系的系统搜寻与研究
  • 批准号:
    12373001
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于FAST的纳赫兹引力波研究
  • 批准号:
    LY23A030001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320407
  • 财政年份:
    2023
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320405
  • 财政年份:
    2023
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320404
  • 财政年份:
    2023
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
Energy filter with fast-counting direct electron detector
带有快速计数直接电子探测器的能量过滤器
  • 批准号:
    525040890
  • 财政年份:
    2023
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Major Research Instrumentation
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320400
  • 财政年份:
    2023
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320406
  • 财政年份:
    2023
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320403
  • 财政年份:
    2023
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320401
  • 财政年份:
    2023
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320402
  • 财政年份:
    2023
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
The next generation fast radio burst detector for Australia
澳大利亚下一代快速无线电爆发探测器
  • 批准号:
    LE210100107
  • 财政年份:
    2022
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了