Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
基本信息
- 批准号:ST/T006439/1
- 负责人:
- 金额:$ 262.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The neutrino is the most abundant matter particle in the universe, and yet we do not know how much it weighs. We know that this particle, which carries 99% of the energy released in supernova explosions and has played an important role in the evolution of the early universe, has an anomalously small mass but we also know that it cannot weigh nothing. It is therefore imperative that we measure this, the last unknown mass in the Standard Model of particle physics.We cannot measure the neutrino mass directly in the laboratory. Rather, we try to constrain as precisely as possible the energy that has gone into creating the neutrino in processes such as nuclear beta-decay. Einstein's famous equation then tells us how to calculate the neutrino mass. Since the neutrino escapes undetected, the experimental task involved in measuring the minimum neutrino energy is actually to measure the maximum energy carried by all of the other particles. The most promising system to use is tritium, in which the proton inside a normal hydrogen nucleus is accompanied by two neutrons. Tritium beta-decays with a half-life of 12.3 years and a very small decay energy of 18.6 kilo-electron-volts; the fact that this decay energy is so small makes it uniquely sensitive to the tiny neutrino mass.We will need to develop techniques for trapping very large populations of tritium and measuring with exquisite sensitivity the energy of beta-decay electrons. As a first step we will use deuterium, which is much easier to handle than radioactive tritium. We will magnetically decelerate beams of deuterium into very well characterised magnetic traps. Electrons generated inside the trap will undergo circular motion and in so doing will emit microwave radiation. We will develop the quantum sensors that are capable of detecting the vanishingly low-power signals that are generated in this way. The ultimate aim of this project is to show that we have, in principle, the technologies required for a much larger experiment that would have sensitivity to all possible values of the neutrino mass. Such an experiment could perhaps be hosted in the UK where, at the Culham Centre for Fusion Energy, world-leading facilities for handling large tritium inventories exist and are being further developed.
中微子是宇宙中最丰富的物质粒子,但我们不知道它的重量。我们知道,这种粒子携带着超新星爆炸释放的99%的能量,在早期宇宙的演化中发挥了重要作用,它的质量异常小,但我们也知道,它不可能没有重量。因此,我们必须测量这个,这是粒子物理标准模型中最后一个未知质量。我们不能在实验室直接测量中微子质量。相反,我们试图尽可能精确地限制在核β衰变等过程中创造中微子的能量。然后,爱因斯坦著名的方程告诉我们如何计算中微子质量。由于中微子逃逸而未被发现,测量最小中微子能量的实验任务实际上是测量所有其他粒子携带的最大能量。最有希望使用的系统是氚,在这种系统中,正常氢核中的质子伴随着两个中子。氚的半衰期为12.3年,衰变能量非常小,仅为18.6千电子伏特;这种衰变能量如此之小,使其对微小的中微子质量特别敏感。我们将需要开发捕获非常大的氚粒子群并以极高的灵敏度测量β衰变电子能量的技术。作为第一步,我们将使用氚,它比放射性氚更容易处理。我们将通过磁力减速,使重氢射束进入特征非常明确的磁陷阱。在陷阱内产生的电子将经历圆周运动,在这样做的过程中将发射微波辐射。我们将开发能够检测以这种方式产生的逐渐消失的低功率信号的量子传感器。这个项目的最终目的是表明,原则上,我们拥有进行更大规模实验所需的技术,该实验将对所有可能的中微子质量值具有敏感性。这样的实验或许可以在英国进行,在卡勒姆聚变能源中心,世界领先的处理大量氚库存的设施已经存在,并正在进一步开发中。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear mechanisms in Al and Ti superconducting travelling-wave parametric amplifiers
Al 和 Ti 超导行波参量放大器中的非线性机制
- DOI:10.1088/1361-6463/ac782e
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhao S
- 通讯作者:Zhao S
Absolute static-field magnetometry, magnetic gradiometry, and vector electrometry with circular Rydberg atoms
圆形里德伯原子的绝对静场磁力测量、磁梯度测量和矢量静电测量
- DOI:10.1103/physreva.107.062820
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Zou J
- 通讯作者:Zou J
Requirements on quantum superpositions of macro-objects for sensing neutrinos
- DOI:10.1103/physrevresearch.5.023012
- 发表时间:2022-04
- 期刊:
- 影响因子:4.2
- 作者:E. Kilian;M. Toroš;F. Deppisch;R. Saakyan;S. Bose
- 通讯作者:E. Kilian;M. Toroš;F. Deppisch;R. Saakyan;S. Bose
Probing van der Waals interactions and detecting polar molecules by Förster-resonance energy transfer with Rydberg atoms at temperatures below 100 mK
在低于 100 mK 的温度下通过与里德堡原子的福斯特共振能量转移探测范德华相互作用并检测极性分子
- DOI:10.1103/physreva.106.043111
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:Zou J
- 通讯作者:Zou J
Quantum electronics for fundamental physics
基础物理的量子电子学
- DOI:10.1080/00107514.2023.2180179
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Withington S
- 通讯作者:Withington S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruben Saakyan其他文献
Ruben Saakyan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruben Saakyan', 18)}}的其他基金
High Resolution Fast Detector for Quality Assurance in Proton Beam Therapy
用于质子束治疗质量保证的高分辨率快速检测器
- 批准号:
ST/N003551/1 - 财政年份:2016
- 资助金额:
$ 262.86万 - 项目类别:
Research Grant
SuperNEMO demonstrator module construction.
SuperNEMO 演示模块构建。
- 批准号:
ST/H000607/1 - 财政年份:2009
- 资助金额:
$ 262.86万 - 项目类别:
Research Grant
Studentship for SuperNEMO design study
SuperNEMO 设计研究奖学金
- 批准号:
ST/H003975/1 - 财政年份:2009
- 资助金额:
$ 262.86万 - 项目类别:
Research Grant
Design study of the SuperNEMO experiment
SuperNEMO实验的设计研究
- 批准号:
PP/D000521/1 - 财政年份:2006
- 资助金额:
$ 262.86万 - 项目类别:
Research Grant
相似海外基金
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
- 批准号:
ST/T006307/2 - 财政年份:2022
- 资助金额:
$ 262.86万 - 项目类别:
Research Grant
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
- 批准号:
ST/T006307/1 - 财政年份:2021
- 资助金额:
$ 262.86万 - 项目类别:
Research Grant
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
- 批准号:
ST/T006455/1 - 财政年份:2021
- 资助金额:
$ 262.86万 - 项目类别:
Research Grant
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
- 批准号:
ST/T006838/1 - 财政年份:2021
- 资助金额:
$ 262.86万 - 项目类别:
Research Grant
Establishment of 8-band observation method for CMB and its foreground radiation toward determination of absolute Neutrino mass
确定中微子绝对质量的宇宙微波背景及其前景辐射8波段观测方法的建立
- 批准号:
21H04485 - 财政年份:2021
- 资助金额:
$ 262.86万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
- 批准号:
ST/T006137/1 - 财政年份:2021
- 资助金额:
$ 262.86万 - 项目类别:
Research Grant
Probing the absolute neutrino mass scale with a large TES bolometer array for CMB polarization measurement
使用大型 TES 测辐射热计阵列探测绝对中微子质量尺度,进行 CMB 偏振测量
- 批准号:
20H01921 - 财政年份:2020
- 资助金额:
$ 262.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Probing the Absolute Neutrino Mass scale with a Precise Measurement of Cosmic Microwave Background Polarization
通过精确测量宇宙微波背景偏振来探测绝对中微子质量尺度
- 批准号:
15H03670 - 财政年份:2015
- 资助金额:
$ 262.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interference and diffraction of the neutrino and the absolute neutrino mass
中微子的干涉和衍射以及绝对中微子质量
- 批准号:
24340043 - 财政年份:2012
- 资助金额:
$ 262.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Measurement of neutrino absolute mass using superconducting detectors and Rhenium
使用超导探测器和铼测量中微子绝对质量
- 批准号:
22684009 - 财政年份:2010
- 资助金额:
$ 262.86万 - 项目类别:
Grant-in-Aid for Young Scientists (A)