Searches for Beyond the Standard Model Physics with Hadronic Topologies
利用强子拓扑寻找超越标准模型物理的研究
基本信息
- 批准号:ST/N003934/2
- 负责人:
- 金额:$ 34.29万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Physicists want to determine the most fundamental building blocks of the Universe and how they interact. Currently, our best theory is called the Standard Model (SM). It explains how magnetic fields and electrical currents are related to radioactive nuclei decay and the force that holds a proton together. However, many open questions exist within and beyond the SM. Neither ~95% of the known universe nor gravity is described by the SM, for instance.The SM deals only with the visible Universe, while the majority of matter does not emit or absorb light: aptly named dark matter (DM). By looking at gravitational effects on stars in galaxies and clusters of galaxies, we suspect DM comprises ~84% of the Universe's mass. DM has not yet been observed on Earth because it may interact very weakly with visible matter. Some attempts to explain DM are simple and only include one new particle and mediator - the bridge between the dark and visible worlds. Others, such as Supersymmetry, a very popular SM extension, predict many new particles, one of which could be DM.Gravity is very weak. A kitchen magnet holds a paper clip against the gravitational pull of the entire Earth. One explanation is that the Universe contains more than four dimensions, and we only feel a fraction of the full gravitational potential in our four.As scientists, we develop possible answers to unexplained phenomena, such as those mentioned above, and devise experiments to test our ideas; sometimes we find the completely unexpected. The Large Hadron Collider (LHC) was built for this purpose. The LHC smashes together protons at very high energies to create all the SM particles and hopefully a few never seen before! DM particles themselves or the DM mediator can be created in proton-proton collisions. The higher dimensional theories focusing on gravity predict the creation of black holes at LHC energies. These and a host of other theories tackling the big physics questions, if true, predict new particles will be produced by the LHC and decay into jets - highly energetic collimated sprays of SM particles. An excess in the number of such decays would signify that we have found new physics and revolutionize our understanding of the Universe!With every discovery, the new physics gives insight to the most fundamental workings of the Universe. It changes our understanding of the Universe and the way we live in it. The discovery of the electron allowed us to harness the power of electricity and magnets, understanding the rules of the atom yielded nuclear energy to power our cities, and Einstein's theory of relativity enabled Global Positioning Systems to find our way across this beautiful planet. Technologies developed by physicists have amazing potential for progress, and the World Wide Web for example was created at CERN. Physicists trained in the rigors of the scientific method on tremendous datasets are employed by governments, businesses, financial institutions, and even sports teams to analyze data and solve complicated problems. Nevertheless, for me, the reason to understand nature at a fundamental level is best encapsulated by the Nobel laureate Steven Weinberg when he wrote, "The effort to understand the Universe is one of the very few things which lifts human life a little above the level of farce and gives it some of the grace of tragedy."
物理学家希望确定宇宙最基本的组成部分以及它们如何相互作用。目前,我们最好的理论称为标准模型(SM)。它解释了磁场和电流如何与放射性核衰变以及将质子结合在一起的力相关。然而,SM 内部和外部还存在许多悬而未决的问题。例如,SM 无法描述约 95% 的已知宇宙和引力。SM 只处理可见宇宙,而大多数物质不发射或吸收光:恰当地命名为暗物质 (DM)。通过观察星系和星系团中恒星的引力效应,我们怀疑 DM 约占宇宙质量的 84%。 DM 尚未在地球上被观测到,因为它与可见物质的相互作用可能非常微弱。一些解释 DM 的尝试很简单,只包括一种新的粒子和介质——黑暗世界和可见世界之间的桥梁。其他粒子,例如超对称(Supersymmetry),一种非常流行的 SM 扩展,预测了许多新粒子,其中之一可能是 DM。引力非常弱。厨房磁铁吸住回形针,抵抗整个地球的引力。一种解释是,宇宙包含四个以上的维度,而我们只能感受到四个维度中全部引力势的一小部分。 作为科学家,我们对无法解释的现象(例如上面提到的现象)提出了可能的答案,并设计实验来检验我们的想法;有时我们会发现完全出乎意料的事情。大型强子对撞机(LHC)就是为此目的而建造的。大型强子对撞机以非常高的能量将质子粉碎在一起,产生所有的 SM 粒子,希望还有一些以前从未见过的粒子! DM 粒子本身或 DM 介体可以在质子-质子碰撞中产生。关注重力的高维理论预测了大型强子对撞机能量下黑洞的产生。这些以及许多其他解决重大物理问题的理论如果正确的话,预测大型强子对撞机将产生新的粒子并衰变成射流——SM粒子的高能准直喷雾。此类衰变次数过多将意味着我们已经发现了新的物理学,并彻底改变了我们对宇宙的理解!每一次发现,新的物理学都会让我们深入了解宇宙最基本的运作方式。它改变了我们对宇宙以及我们在其中生活的方式的理解。电子的发现使我们能够利用电力和磁铁的力量,了解原子的规则产生核能来为我们的城市提供动力,爱因斯坦的相对论使全球定位系统能够找到我们穿越这个美丽星球的道路。物理学家开发的技术具有惊人的进步潜力,例如万维网就是由欧洲核子研究中心创建的。政府、企业、金融机构甚至运动队聘用在海量数据集上接受严格科学方法训练的物理学家来分析数据并解决复杂问题。然而,对我来说,诺贝尔奖获得者史蒂文·温伯格(Steven Weinberg)最好地概括了从根本上理解自然的原因,他写道:“理解宇宙的努力是使人类生活略高于闹剧水平并赋予其悲剧优雅的极少数事情之一。”
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the model dependence of fiducial cross-section measurements
基准横截面测量的模型依赖性
- DOI:10.1142/s0217732320500650
- 发表时间:2019
- 期刊:
- 影响因子:1.4
- 作者:Facini G
- 通讯作者:Facini G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Facini其他文献
Gabriel Facini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Facini', 18)}}的其他基金
Searches for Beyond the Standard Model Physics with Hadronic Topologies
利用强子拓扑寻找超越标准模型物理的研究
- 批准号:
ST/N003934/3 - 财政年份:2021
- 资助金额:
$ 34.29万 - 项目类别:
Fellowship
Searches for Beyond the Standard Model Physics with Hadronic Topologies
利用强子拓扑寻找超越标准模型物理的研究
- 批准号:
ST/N003934/1 - 财政年份:2017
- 资助金额:
$ 34.29万 - 项目类别:
Fellowship
相似海外基金
Collaborative Research: Beyond Standard Model Searches Using the IceCube Neutrino Telescope
协作研究:使用 IceCube 中微子望远镜进行超越标准模型搜索
- 批准号:
2310051 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
Collaborative Research: Beyond Standard Model Searches Using the IceCube Neutrino Telescope
协作研究:使用 IceCube 中微子望远镜进行超越标准模型搜索
- 批准号:
2310050 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
Refining Searches for Physics Beyond the Standard Model
完善标准模型之外的物理学搜索
- 批准号:
2310497 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Continuing Grant
New Approaches to Beyond Standard Model Searches with Colliders and Cosmology
使用碰撞器和宇宙学超越标准模型搜索的新方法
- 批准号:
SAPIN-2018-00032 - 财政年份:2022
- 资助金额:
$ 34.29万 - 项目类别:
Subatomic Physics Envelope - Individual
PM: Precision Searches for Physics Beyond the Standard Model Using Optically Levitated Mcrospheres
PM:使用光学悬浮微球精确搜索超出标准模型的物理现象
- 批准号:
2109329 - 财政年份:2022
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
Searches for Physics Beyond the Standard Model through the Running of the Strong Coupling Constant in the ATLAS Experiment at the LHC
通过在 LHC 的 ATLAS 实验中运行强耦合常数来寻找超出标准模型的物理
- 批准号:
2209492 - 财政年份:2022
- 资助金额:
$ 34.29万 - 项目类别:
Standard Grant
ATLAS Beyond the Standard Model Searches in Multileptonic Final State
ATLAS 超越多轻子最终状态的标准模型搜索
- 批准号:
2654361 - 财政年份:2021
- 资助金额:
$ 34.29万 - 项目类别:
Studentship
Searches for Beyond the Standard Model Physics with Hadronic Topologies
利用强子拓扑寻找超越标准模型物理的研究
- 批准号:
ST/N003934/3 - 财政年份:2021
- 资助金额:
$ 34.29万 - 项目类别:
Fellowship
Accelerating Searches for Beyond the Standard Model Physics and the ATLAS Pixel Detector
加速超越标准模型物理和 ATLAS 像素探测器的搜索
- 批准号:
2110963 - 财政年份:2021
- 资助金额:
$ 34.29万 - 项目类别:
Continuing Grant
New Approaches to Beyond Standard Model Searches with Colliders and Cosmology
使用碰撞器和宇宙学超越标准模型搜索的新方法
- 批准号:
SAPIN-2018-00032 - 财政年份:2021
- 资助金额:
$ 34.29万 - 项目类别:
Subatomic Physics Envelope - Individual














{{item.name}}会员




