Synthesis of remote sensing and novel ground truth sensors to develop high resolution soil moisture forecasts in China and the UK
综合遥感和新型地面实况传感器,开发中国和英国的高分辨率土壤湿度预报
基本信息
- 批准号:ST/N006836/1
- 负责人:
- 金额:$ 125.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The availability of water is a key driver of agricultural productivity. It directly impacts plant growth, and in many countries and locations it is in short or over supply. The impact of water availability on global food production is seen as a key global risk and challenge. Water availability is a hugely contentious international issue, and global climate change, potentially driving increased droughts and flooding, is considered a compounding factor. This projects seeks to develop agri-tech solutions to help alleviate the issue of water in agriculture, and for producers to ultimately drive water use efficiency. Soil moisture directly impacts crop growth, it drives irrigation systems and once a soil has reached its holding capacity excess water rapidly runs into the drainage system, potentially impacting flood risk and system drainage capacity. One of the most significant challenges within the water debate is that there are few simple and reliable systems to measure soil moisture. It is difficult to accurately measure. Techniques developed include spot THD capacitance sensors, the use of neutron probes and more recently the use of remote sensing techniques. Currently, there is no system to measure soil moisture distribution accurately across a field, and the resolution of remote sensing has not been sufficient for agricultural application, or local water management to reduce flood risk. In this project we will bring together a suite of new technologies which increase the resolution of soil moisture measurement to render it applicable for agricultural application on a field, as well as, landscape scale.The project will deploy two new sensors (one static, one mobile) within China that measures soil moisture content as a function of the albedo of cosmically generated fast neutrons (Cosmos sensor, designed by Hydroinova, US). The static sensor measures soil moisture within a field up to a 200m radius from the measurement point. A mesh of static sensors will be deployed within Henan and Hebei province (which produces 40% wheat of China), China. The mobile sensor will be deployed on a bespoke autonomous vehicle or rover to measure soil moisture variation within a field. The vehicle will be developed within the project and will be the first autonomous deployment of this sensor technology. Data from the soil moisture sensors will be used to calibrate the InSARS sensor on the Sentinel-1 satellite to monitor soil moisture within China to within a 500m x 500m resolution. This is a 5-fold improvement on current resolution from SARS. Ultimately, the technology will enable near real time forecasts of soil moisture at a field scale. This information will be invaluable to agricultural producers and for flood risk forecasting, including key insights to improve water use efficiency, irrigation practices, land drainage and the implementation of precision agricultural techniques. This is an ambitious multi disciplinary project. The project coordinates the expertise of four key groups, the University of Lincoln (robotics, mapping and deployment of autonomous vehicles), the Institute of Ecology and Agrometeorology (IEAM) of Chinese Academy of Meteorological Sciences, University of Information Science &Technology, the Centre for Ecology and Hydrology (Wallingford) and the School of Geography and Earth Sciences, The University of Aberystwth. Considerable focus is placed on knowledge exchange, not just with the agricultural and hydrological communities, but also between international partners within the project. We anticipate that the UK will benefit from understanding the challenges of developing sensor networks in China, with significant differences in scale and environment. The Chinese team will spend considerable periods embedded with the UK academics to learn new skills in remote sensing, sensor deployment and autonomous vehicles.
水的供应是农业生产力的关键驱动力。它直接影响植物生长,在许多国家和地区,它供应不足或过剩。水供应对全球粮食生产的影响被视为一个关键的全球风险和挑战。水的供应是一个极具争议的国际问题,而全球气候变化可能导致干旱和洪水的增加,被认为是一个复合因素。该项目旨在开发农业技术解决方案,以帮助缓解农业用水问题,并为生产者最终提高用水效率。土壤湿度直接影响作物生长,它驱动灌溉系统,一旦土壤达到其容纳能力,多余的水迅速流入排水系统,可能影响洪水风险和系统排水能力。水辩论中最重要的挑战之一是,几乎没有简单可靠的系统来测量土壤湿度。很难准确测量。开发的技术包括现场THD电容传感器,中子探头的使用,最近使用遥感技术。目前,还没有一个系统可以准确地测量农田中的土壤水分分布,遥感的分辨率也不足以用于农业应用或当地的水管理以减少洪水风险。在这个项目中,我们将汇集一套新技术,提高土壤水分测量的分辨率,使其适用于农田和景观尺度的农业应用。(一个静态的,一个移动的),测量土壤水分含量作为宇宙产生的快中子的衰变量的函数(Cosmos传感器,由美国Hydroinova设计)。静态传感器测量距离测量点200米半径范围内的土壤湿度。一个静态传感器网络将部署在河南省和河北省(生产中国40%的小麦),中国。该移动的传感器将被部署在定制的自动驾驶车辆或流动站上,以测量田地内的土壤湿度变化。该车辆将在该项目内开发,并将成为该传感器技术的首次自主部署。来自土壤湿度传感器的数据将用于校准Sentinel-1卫星上的InSARS传感器,以监测中国境内的土壤湿度,分辨率在500米x500米以内。这是目前SARS解决方案的5倍改进。最终,该技术将使近真实的时间预测的土壤湿度在外地规模。这些信息对于农业生产者和洪水风险预测将是非常宝贵的,包括提高用水效率、灌溉做法、土地排水和实施精准农业技术的关键见解。这是一个雄心勃勃的多学科项目。该项目协调了四个关键团体的专业知识,即林肯大学(机器人技术,自动驾驶车辆的测绘和部署),中国气象科学研究院生态与农业气象研究所(IEAM),信息科学与技术大学,生态与水文中心(Wallingford)和阿伯里斯特思大学地理与地球科学学院。相当重视知识交流,不仅与农业和水文界,而且在项目内的国际合作伙伴之间。我们预计,英国将受益于了解在中国发展传感器网络的挑战,在规模和环境方面存在显着差异。中国团队将花相当长的时间与英国学者一起学习遥感,传感器部署和自动驾驶汽车方面的新技能。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Additional Moderator to Control the Footprint of a COSMOS Rover for Soil Moisture Measurement
- DOI:10.1029/2020wr028478
- 发表时间:2021-05
- 期刊:
- 影响因子:5.4
- 作者:A. Badiee;J. Wallbank;J. P. Fentanes;E. Trill;Pete Scarlet;Yongchao Zhu;Grzegorz Cielniak;Hollie M. Coop
- 通讯作者:A. Badiee;J. Wallbank;J. P. Fentanes;E. Trill;Pete Scarlet;Yongchao Zhu;Grzegorz Cielniak;Hollie M. Coop
Kriging-based robotic exploration for soil moisture mapping using a cosmic-ray sensor
使用宇宙射线传感器进行基于克里金法的土壤湿度测绘机器人探索
- DOI:10.1002/rob.21914
- 发表时间:2019
- 期刊:
- 影响因子:8.3
- 作者:Pulido Fentanes J
- 通讯作者:Pulido Fentanes J
3D Soil Compaction Mapping through Kriging-based Exploration with a Mobile Robot
使用移动机器人通过基于克里金法的探索绘制 3D 土壤压实图
- DOI:10.48550/arxiv.1803.08069
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Fentanes J
- 通讯作者:Fentanes J
Complex systems modelling of UK winter wheat yield
- DOI:10.1016/j.compag.2023.107855
- 发表时间:2023-04-27
- 期刊:
- 影响因子:8.3
- 作者:Hall,R. J.;Wei,H. -L.;Hanna,E.
- 通讯作者:Hanna,E.
3-D Soil Compaction Mapping Through Kriging-Based Exploration With a Mobile Robot
使用移动机器人通过基于克里金法的勘探绘制 3D 土壤压实图
- DOI:10.1109/lra.2018.2849567
- 发表时间:2018
- 期刊:
- 影响因子:5.2
- 作者:Fentanes J
- 通讯作者:Fentanes J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Pearson其他文献
Relationships Between Dry-land Resistance Training and Swim Start Performance and Effects of Such Training on the Swim Start: A Systematic Review
- DOI:
10.1007/s40279-019-01174-x - 发表时间:
2019-09-06 - 期刊:
- 影响因子:9.400
- 作者:
Shiqi Thng;Simon Pearson;Justin W. L. Keogh - 通讯作者:
Justin W. L. Keogh
Eccentric Exercise: Physiological Characteristics and Acute Responses
- DOI:
10.1007/s40279-016-0624-8 - 发表时间:
2016-09-15 - 期刊:
- 影响因子:9.400
- 作者:
Jamie Douglas;Simon Pearson;Angus Ross;Mike McGuigan - 通讯作者:
Mike McGuigan
Scoping Potential Routes to UK Civil Unrest via the Food System: Results of a Structured Expert Elicitation
通过食品系统确定英国内乱的潜在途径:结构化专家启发的结果
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Aled Jones;S. Bridle;Katherine Denby;R. Bhunnoo;Daniel Morton;Lucy Stanbrough;Barnaby Coupe;Vanessa Pilley;Tim Benton;P. Falloon;Tom K. Matthews;S. Hasnain;John S. Heslop;S. Beard;Julie Pierce;Jules Pretty;Monika Zurek;Alexandra M. Johnstone;Peter Smith;Neil Gunn;Molly Watson;Edward Pope;A. Tzachor;Caitlin Douglas;C. Reynolds;Neil Ward;Jez Fredenburgh;C. Pettinger;Tom Quested;J. P. Cordero;Clive Mitchell;Carrie Bewick;Cameron Brown;Christopher Brown;Paul J. Burgess;Andy Challinor;Andrew Cottrell;Tom Crocker;Thomas George;Charles J. Godfray;Rosie S. Hails;John Ingram;Tim Lang;Fergus Lyon;Simon Lusher;Tom Macmillan;Sue Newton;Simon Pearson;Sue Pritchard;Dale Sanders;Angelina Sanderson Bellamy;Megan Steven;A. Trickett;Andrew Voysey;Christine A Watson;Darren Whitby;Kerry Whiteside - 通讯作者:
Kerry Whiteside
Relationship between temperature and cauliflower (Brassica oleracea L. var. botrytis) growth and development after curd initiation
- DOI:
10.1007/s10725-007-9177-z - 发表时间:
2007-04-04 - 期刊:
- 影响因子:3.900
- 作者:
Habib Ur Rahman;Paul Hadley;Simon Pearson - 通讯作者:
Simon Pearson
Large language models impact on agricultural workforce dynamics: Opportunity or risk?
大型语言模型对农业劳动力动态的影响:机遇还是风险?
- DOI:
10.1016/j.atech.2024.100677 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:5.700
- 作者:
Vasso Marinoudi;Lefteris Benos;Carolina Camacho Villa;Dimitrios Kateris;Remigio Berruto;Simon Pearson;Claus Grøn Sørensen;Dionysis Bochtis - 通讯作者:
Dionysis Bochtis
Simon Pearson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Pearson', 18)}}的其他基金
Plant selection and breeding for net zero
净零植物选择和育种
- 批准号:
EP/Y00504X/1 - 财政年份:2023
- 资助金额:
$ 125.81万 - 项目类别:
Research Grant
STREAM 2: The LINCAM AgTech Cluster
流 2:LINCAM 农业科技集群
- 批准号:
EP/Y023854/1 - 财政年份:2023
- 资助金额:
$ 125.81万 - 项目类别:
Research Grant
15AGRITECHCAT4: Third Generation Polyethylene Greenhouse Cladding Materials
15AGRITECHCAT4:第三代聚乙烯温室覆层材料
- 批准号:
BB/N014502/1 - 财政年份:2016
- 资助金额:
$ 125.81万 - 项目类别:
Research Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
低纬度边缘海颗粒有机碳的卫星遥感算法研究
- 批准号:41076114
- 批准年份:2010
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
- 批准号:
2334619 - 财政年份:2024
- 资助金额:
$ 125.81万 - 项目类别:
Standard Grant
Law And Policy Framework For Remote Sensing In Maritime Enforcement
海事执法遥感法律和政策框架
- 批准号:
DP240100920 - 财政年份:2024
- 资助金额:
$ 125.81万 - 项目类别:
Discovery Projects
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
- 批准号:
2334618 - 财政年份:2024
- 资助金额:
$ 125.81万 - 项目类别:
Continuing Grant
Next generation forest dynamics modelling using remote sensing data
使用遥感数据的下一代森林动力学建模
- 批准号:
MR/Y033981/1 - 财政年份:2024
- 资助金额:
$ 125.81万 - 项目类别:
Fellowship
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
- 批准号:
2320259 - 财政年份:2024
- 资助金额:
$ 125.81万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Remote Sensing Tools for Catalyzing Equitable Water Outcomes
NSF 融合加速器轨道 K:促进公平水成果的遥感工具
- 批准号:
2344337 - 财政年份:2024
- 资助金额:
$ 125.81万 - 项目类别:
Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
- 批准号:
2320260 - 财政年份:2024
- 资助金额:
$ 125.81万 - 项目类别:
Standard Grant
CAREER: Dynamic Locomotion with Plasticity for Remote Sensing in Crawlspaces
职业:具有可塑性的动态运动,用于狭小空间的遥感
- 批准号:
2340278 - 财政年份:2024
- 资助金额:
$ 125.81万 - 项目类别:
Standard Grant
I-Corps: Using Remote Sensing and Geospatial Data for Informed Climate Adaptation, Mitigation, Resiliency, and Environmentally Friendly Solutions
I-Corps:利用遥感和地理空间数据提供明智的气候适应、减缓、恢复和环境友好解决方案
- 批准号:
2314315 - 财政年份:2023
- 资助金额:
$ 125.81万 - 项目类别:
Standard Grant
Integrating Remote Sensing and Deep Learning for Predictive Surveillance of Mine Tailings Impoundments
集成遥感和深度学习对尾矿库进行预测监测
- 批准号:
2242668 - 财政年份:2023
- 资助金额:
$ 125.81万 - 项目类别:
Standard Grant














{{item.name}}会员




