PAFiC: Precision Agriculture for Family-farms in China
PAFiC:中国家庭农场的精准农业
基本信息
- 批准号:ST/N006801/1
- 负责人:
- 金额:$ 164.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rapid advances in fertiliser use and other inputs to crops have dramatically improved Chinese crop production over recent decades, but this has not been done in a sustainable manner and it is estimated that >10M t of synthetic nitrogen fertiliser is wasted annually in China. The number of small to medium-sized commercial family farms is increasing from a merging of smaller, non-commercial family plots. It is desirable to support these farms to maintain rural populations and economies. These family-farmers also need technological assistance to manage larger areas that they have no historical connection to. Precision agriculture, allowing for fine-scale within-field management of crops based on detailed spatial data collection, has an essential role to play in increasing fertiliser and resource use efficiency on farms. This will increase production efficiency (profitability) as well as reduce the environmental footprint of agricultural practices linked to fertilizer use. However, in China there are fundamental barriers to uptake of precision agriculture methods and technology, including high costs relative to income and unquantified financial benefits, a lack of data and services and a lack of awareness and acceptance by growers, communities and administrative agencies. This joint UK-China collaboration aims to improve the use efficiency of nutrients and agri-chemicals in crop production in China, by addressing key technological, agricultural and social or economic barriers to the use of precision agriculture methods in commercial family farms. The project will develop new technology and data sources for agricultural decision making, including the application of advanced hyperspectral cameras, able to measure many wavelengths of light and provide detailed information on crop health, and improved technology for precise spatial positioning within fields. Improved methods to utilise satellite imagery, especially from radar sensors systems, to provide accessible data on crop nutrient levels and growth will also be developed and the advantages of combining data from multiple sources (satellites, airborne sensors and ground monitoring) will be assessed. These improved data layers, providing frequent and detailed spatial information on crop growth, crop health and soils, will then be combined with models of crop growth to provide a system for agricultural decision making that is applicable to family farms in China. This will promote the optimal use of agricultural resources, such as fertiliser. Developed methods will be tested on exemplar farms in China, covering a range of geographic regions and crop systems that have been established in previous research projects. To facilitate both the maximum engagement from a diversity of community and industry members, and the maximum usage of the agri-technologies and precision agriculture methods by farmers, it is critical to incorporate both scientific and local (community and practitioner) expertise into the project. This is critical to understanding and addressing issues specific to these farming system. An integral aspect of the project is to therefore undertake focussed research on the societal and economic barriers to uptake and to use of these technologies. This research will identify and address these barriers via the mode of development and the delivery of the project outputs onto family-farms. This work will also form the basis for wide-reaching and effective public engagement, knowledge exchange and policy translation to ensure the latest methods are adopted in China. Activities will include the development of a data information portal for crop management, stakeholder workshops and technical training for local growers and agricultural specialists.
近几十年来,化肥使用和其他作物投入的快速发展极大地提高了中国的作物产量,但这并不是以可持续的方式实现的,据估计,中国每年浪费超过1000万吨合成氮肥。中小型商业家庭农场的数量正在增加,这些农场是由小型非商业家庭土地合并而成的。支持这些农场以维持农村人口和经济是可取的。这些家庭农场主还需要技术援助来管理与他们没有历史联系的更大的地区。精确农业允许根据详细的空间数据收集对作物进行精细的田间管理,在提高农场的肥料和资源使用效率方面发挥着至关重要的作用。这将提高生产效率(盈利能力),并减少与化肥使用有关的农业实践的环境足迹。然而,在中国,采用精准农业方法和技术存在根本性障碍,包括相对于收入的高成本和无法量化的经济利益,缺乏数据和服务,以及种植者、社区和行政机构缺乏认识和接受。这项中英联合合作旨在通过解决商业家庭农场使用精准农业方法的关键技术、农业和社会或经济障碍,提高中国农作物生产中养分和农用化学品的使用效率。该项目将为农业决策开发新的技术和数据来源,包括应用先进的高光谱相机,能够测量许多波长的光并提供有关作物健康的详细信息,以及改进田间精确空间定位技术。还将开发更好的方法,利用卫星图像,特别是雷达传感器系统的图像,提供关于作物营养水平和生长情况的数据,并将评估将多种来源(卫星、空中传感器和地面监测)的数据结合起来的好处。这些改进的数据层提供了关于作物生长、作物健康和土壤的频繁和详细的空间信息,然后将与作物生长模型相结合,为中国家庭农场的农业决策提供一个系统。这将促进化肥等农业资源的最佳利用。所开发的方法将在中国的示范农场进行测试,涵盖一系列地理区域和在以前的研究项目中建立的作物系统。为了促进社区和行业成员的最大参与,以及农民最大限度地利用农业技术和精确农业方法,必须将科学和当地(社区和从业人员)的专门知识纳入项目。这对于理解和解决这些耕作系统的具体问题至关重要。因此,该项目的一个组成部分是对吸收和使用这些技术的社会和经济障碍进行重点研究。这项研究将通过发展模式和向家庭农场提供项目产出来确定和解决这些障碍。这项工作还将为广泛和有效的公众参与、知识交流和政策翻译奠定基础,以确保在中国采用最新的方法。活动将包括开发作物管理数据信息门户、利益攸关方讲习班以及为当地种植者和农业专家提供技术培训。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-temporal yield pattern analysis method for deriving yield zones in crop production systems
作物生产系统中推导产量区的多时相产量模式分析方法
- DOI:10.1007/s11119-020-09719-1
- 发表时间:2020
- 期刊:
- 影响因子:6.2
- 作者:Blasch G
- 通讯作者:Blasch G
Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data
利用改进的水云模型和Radarsat-2数据估算农田土壤湿度
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Guijun Yang
- 通讯作者:Guijun Yang
Application of an Improved Method in Retrieving Leaf Area Index Combined Spectral Index with PLSR in Hyperspectral Data Generated by Unmanned Aerial Vehicle Snapshot Camera
无人机快拍相机生成的高光谱数据中结合光谱指数和PLSR的改进叶面积指数反演方法的应用
- DOI:10.3724/sp.j.1006.2017.00549
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:GAO L
- 通讯作者:GAO L
Use of Google Earth Engine to Generate a 20-Year 1 Km × 1 Km Monthly Air Temperature Product Over Yellow River Basin
利用Google Earth引擎生成黄河流域20年1公里×1公里月气温产品
- DOI:10.1109/jstars.2021.3116258
- 发表时间:2021
- 期刊:
- 影响因子:5.5
- 作者:Gao M
- 通讯作者:Gao M
A proposed framework for accelerating technology trajectories in agriculture: a case study in China
- DOI:10.15302/j-fase-2018244
- 发表时间:2018-11-01
- 期刊:
- 影响因子:3.7
- 作者:Clark, Beth;Jones, Glyn D.;Frewer, Lynn J.
- 通讯作者:Frewer, Lynn J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenhong Li其他文献
High-Resolution Surface Velocities and Strain for Anatolia From Sentinel-1 InSAR and GNSS Data
来自 Sentinel-1 InSAR 和 GNSS 数据的安纳托利亚高分辨率表面速度和应变
- DOI:
10.1029/2020gl087376 - 发表时间:
2020 - 期刊:
- 影响因子:5.2
- 作者:
Jonathan R Weiss;Richard J Walters;Yu Morishita;Tim J Wright;Milan Lazecky;Hua Wang;Ekbal Hussain;Andrew J Hooper;John R Elliott;Chris Rollins;Chen Yu;Pablo J Gonzalez;Karsten Spaans;Zhenhong Li;Barry Parsons - 通讯作者:
Barry Parsons
Pharmacological inhibition of IRAK4 kinase activity does not prevent cachexia in mice with pancreatic cancer
药物抑制 IRAK4 激酶活性并不能预防胰腺癌小鼠的恶病质
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Shuxi Qiao;Brianna LaViolette;Brianna LaCarubba Paulhus;Xiangping Li;John Litchfield;Zhenhong Li;John C. Stansfield;Richard L. Gieseck;B. Zhang;Danna M. Breen - 通讯作者:
Danna M. Breen
Ketotifen: A Role in the Treatment of Idiopathic Anaphylaxis
酮替芬:在治疗特发性过敏反应中的作用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Zhenhong Li;J. Celestin - 通讯作者:
J. Celestin
Source parameters of the 2008 Gaize Mw 6.4 and Mw 5.9 earthquakes from InSAR measurements
2008年改泽Mw 6.4和Mw 5.9地震的InSAR测量震源参数
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
W. Feng;Li;Z. Xu;Zhenhong Li;C. Li;H. Zhao - 通讯作者:
H. Zhao
Production of Regional 1 km x 1 km Water Vapor Fields Through the Intergration of GPS and MODIS Data
- DOI:
- 发表时间:
2004-09 - 期刊:
- 影响因子:0
- 作者:
Zhenhong Li - 通讯作者:
Zhenhong Li
Zhenhong Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenhong Li', 18)}}的其他基金
FREEpHRI: Flexible, Robust and Efficient physical Human-robot Interaction with iterative learning and self-triggered role adaption
FREEpHRI:灵活、稳健、高效的物理人机交互,具有迭代学习和自我触发的角色适应能力
- 批准号:
EP/V057782/2 - 财政年份:2023
- 资助金额:
$ 164.22万 - 项目类别:
Fellowship
FREEpHRI: Flexible, Robust and Efficient physical Human-robot Interaction with iterative learning and self-triggered role adaption
FREEpHRI:灵活、稳健、高效的物理人机交互,具有迭代学习和自我触发的角色适应能力
- 批准号:
EP/V057782/1 - 财政年份:2022
- 资助金额:
$ 164.22万 - 项目类别:
Fellowship
UK-China Agritech Challenge - REmote sensing and Decision support for Apple tree Precision management, Production and globaL tracEability (RED-APPLE)
中英农业科技挑战赛 - 苹果树精准管理、生产和全球可追溯性的遥感和决策支持(红苹果)
- 批准号:
BB/S020985/1 - 财政年份:2019
- 资助金额:
$ 164.22万 - 项目类别:
Research Grant
Community-based earthquake disaster risk reduction in China: integrating local and scientific knowledge for planning and preparedness
中国以社区为基础的地震灾害风险降低:整合当地和科学知识进行规划和备灾
- 批准号:
NE/N012151/1 - 财政年份:2016
- 资助金额:
$ 164.22万 - 项目类别:
Research Grant
GAS: Generic Atmosphere Solutions for radar measurements
GAS:雷达测量的通用大气解决方案
- 批准号:
NE/H001085/1 - 财政年份:2009
- 资助金额:
$ 164.22万 - 项目类别:
Research Grant
相似国自然基金
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
CC* Regional Networking: Regional Collaboration - Precision Agriculture - Yuma AZ
CC* 区域网络:区域协作 - 精准农业 - 亚利桑那州尤马
- 批准号:
2322274 - 财政年份:2023
- 资助金额:
$ 164.22万 - 项目类别:
Standard Grant
Ultra-Precision Agriculture Using Fluorescence Based Label Free Technology for Green Fruit
利用基于荧光的无标签技术实现绿色水果的超精准农业
- 批准号:
22KF0179 - 财政年份:2023
- 资助金额:
$ 164.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Recycling the Radio Spectrum for Science: A New Paradigm for UAS-based Precision Agriculture
职业:科学回收无线电频谱:基于 UAS 的精准农业的新范式
- 批准号:
2405807 - 财政年份:2023
- 资助金额:
$ 164.22万 - 项目类别:
Continuing Grant
"PathoScout” - portable DNA analysis for Precision Agriculture
“PathoScout™ - 用于精准农业的便携式 DNA 分析
- 批准号:
10054346 - 财政年份:2023
- 资助金额:
$ 164.22万 - 项目类别:
Collaborative R&D
Optimising Energy Demand in Rural Communities via Precision Agriculture Technology (SWIFT)
通过精准农业技术优化农村社区的能源需求 (SWIFT)
- 批准号:
10040641 - 财政年份:2023
- 资助金额:
$ 164.22万 - 项目类别:
Feasibility Studies
Travel: Participant Support for a Workshop on Sustainable Precision Agriculture in the Era of IoT and Artificial Intelligence
旅行:物联网和人工智能时代可持续精准农业研讨会的参与者支持
- 批准号:
2326833 - 财政年份:2023
- 资助金额:
$ 164.22万 - 项目类别:
Standard Grant
CCRI: Planning-C: A Framework for Development of Robots and IoT for Precision Agriculture
CCRI:Planning-C:精准农业机器人和物联网开发框架
- 批准号:
2213839 - 财政年份:2022
- 资助金额:
$ 164.22万 - 项目类别:
Standard Grant
NSERC Industrial Research Chair for Colleges in precision agriculture and environmental technologies
NSERC 精准农业和环境技术学院工业研究主席
- 批准号:
428341-2016 - 财政年份:2022
- 资助金额:
$ 164.22万 - 项目类别:
Industrial Research Chairs for Colleges Grants
Developing robust sensors for IoT applications in precision agriculture
为精准农业中的物联网应用开发强大的传感器
- 批准号:
RGPIN-2022-05095 - 财政年份:2022
- 资助金额:
$ 164.22万 - 项目类别:
Discovery Grants Program - Individual
Advancing Precision Agriculture in the Urban Environment
推进城市环境中的精准农业
- 批准号:
2202151 - 财政年份:2022
- 资助金额:
$ 164.22万 - 项目类别:
Standard Grant