ASTROSENSE: applying astrophysics algorithms to remote sensing data

ASTROSENSE:将天体物理学算法应用于遥感数据

基本信息

  • 批准号:
    ST/R005265/1
  • 负责人:
  • 金额:
    $ 38.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Machine learning is a computational data analysis technique that offers tremendous benefits over traditional methods. In particular, algorithms can be developed that can automatically identify objects or features of interest in digital imaging. Some machine learning algorithms require extensive training through labelled examples, but unsupervised algorithms can learn from the data itself, requiring no pre-labelled training set. This makes such algorithms incredibly versatile and can be easily applied to many different types of imaging. In principle, the algorithm's performance should improve over time as it 'experiences' more examples of input data. We are developing just an unsupervised machine learning algorithm for use in large-scale astronomical surveys that can also be applied in other 'remote sensing' data, such as underwater sonar imaging of the sea bed and aerial/satellite imagery. Such an algorithm can, for example, help determine the local terrain and identify hazards in complex, changing environments that could be missed by a human inspector. This could feed into AI-assisted navigation units in autonomous vehicles for example. Our goal in this project is to develop a versatile, robust algorithm that can be deployed in a variety of practical areas, with a view to performing real-time image classification and analysis on input data, both from astrophysics and 'real-world' industrial sectors.
机器学习是一种计算数据分析技术,与传统方法相比具有巨大的优势。特别地,可以开发可以自动识别数字成像中感兴趣的对象或特征的算法。一些机器学习算法需要通过标记的示例进行广泛的训练,但无监督算法可以从数据本身学习,不需要预先标记的训练集。这使得这种算法非常通用,可以很容易地应用于许多不同类型的成像。原则上,算法的性能应该随着时间的推移而提高,因为它“经历”了更多的输入数据示例。我们正在开发一种用于大规模天文调查的无监督机器学习算法,该算法也可以应用于其他“遥感”数据,例如海底水下声纳成像和航空/卫星图像。例如,这种算法可以帮助确定当地地形,并识别人类检查员可能错过的复杂变化环境中的危险。例如,这可以输入自动驾驶汽车中的人工智能辅助导航单元。我们在这个项目中的目标是开发一个通用的,强大的算法,可以部署在各种实际领域,以期执行实时图像分类和分析的输入数据,无论是从天体物理学和“现实世界”的工业部门。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AstroVaDEr: astronomical variational deep embedder for unsupervised morphological classification of galaxies and synthetic image generation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Geach其他文献

James Geach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Geach', 18)}}的其他基金

ClearSky: cloud-free monitoring of UK agriculture
ClearSky:英国农业的无云监控
  • 批准号:
    ST/V002252/1
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Research Grant
G2G: from galaxies to the ground
G2G:从星系到地面
  • 批准号:
    ST/S002057/1
  • 财政年份:
    2019
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Research Grant

相似海外基金

Applying a Program Science approach for strengthening partnerships and advancing embedded research to optimize public health programming for HIV and sexually transmitted and blood-borne infections among criminalized populations in the Global South
应用计划科学方法来加强伙伴关系并推进嵌入式研究,以优化南半球犯罪人群中针对艾滋病毒、性传播和血源性感染的公共卫生规划
  • 批准号:
    502554
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
Applying synthetic biology to the development of in vivo technologies for the monitoring and control of vector-borne diseases.
应用合成生物学来开发用于监测和控制媒介传播疾病的体内技术。
  • 批准号:
    BB/Y008340/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Research Grant
Applying advanced understanding of CTLA-4 function to optimise therapies for autoimmunity
应用对 CTLA-4 功能的深入理解来优化自身免疫疗法
  • 批准号:
    MR/Y001273/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Research Grant
Applying a complex systems perspective to investigate the relationship between choreography and agent-based modeling as tools for scientific sense-making
应用复杂系统的视角来研究编排和基于代理的建模之间的关系,作为科学意义构建的工具
  • 批准号:
    2418539
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
HSI Pilot Project: Applying a Research-Based Learning Approach to Enhance Biomanufacturing Skills
HSI 试点项目:应用基于研究的学习方法来提高生物制造技能
  • 批准号:
    2345033
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Applying digital archeology to rock art placement
将数字考古学应用于岩画布局
  • 批准号:
    DE240100030
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Discovery Early Career Researcher Award
ARISTOTELES - Applying ARtificial Intelligence to Define clinical trajectorieS for personalized predicTiOn and early deTEctiOn of comorbidiTy and muLtimorbidiTy pattErnS
亚里士多德 - 应用人工智能定义临床轨迹,以实现个性化预测以及合并症和多发病模式的早期检测
  • 批准号:
    10103153
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    EU-Funded
Applying co-production to enhance Ontario's clinical trial landscape
应用联合生产来增强安大略省的临床试验前景
  • 批准号:
    484616
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Fellowship Programs
Applying an equity and diversity lens to understand the care experiences and healthcare outcomes of low income and linguistic minority groups in Ontario retirement homes: A mixed methods study
应用公平和多样性的视角来了解安大略省养老院中低收入和语言少数群体的护理体验和医疗保健结果:一项混合方法研究
  • 批准号:
    484613
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Fellowship Programs
Establishment of therapeutic strategy for corneal stromal scaring treatment by applying the ZFP521 gene.
应用ZFP521基因建立角膜基质疤痕治疗策略。
  • 批准号:
    23K09045
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了