UoP2 Mars Consortium
UoP2 火星联盟
基本信息
- 批准号:ST/S000291/1
- 负责人:
- 金额:$ 43.56万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The question of whether Mars could have supported life has driven intensive exploration of the planet's surface through satellite and robotic missions. Complementary research has focused on identifying and understanding meteorites from Mars, which offer the only direct samples of the crust available to science. Together, these studies have not only sought signs of extraterrestrial life and habitable environments, but tried to understand how the planet has changed through time: from an ancient world of oceans and landforms remarkably familiar to Earth, to the cold, dry, barren planet that we see today. Why Mars has followed a dramatically different path to Earth is a major issue in our understanding of terrestrial planet evolution. How has Mars lost heat? Has volcanism and volcanic outgassing changed through time? Is volcanism and seismic activity ongoing? How has impact cratering shaped the planet through time?It has become clear that much of the surface of Mars is very ancient, and that its rocks retain direct evidence of the planet's separation into a crust and mantle. As a result, volcanism is thought to be driven by mantle plumes, rather by tectonic forces at plate boundaries as on Earth, and to have reduced rapidly in intensity to a minimum as the planet has cooled. This relatively simple geological model compared to the Earth suggests declining rates of exchange between the surface, atmosphere and interior through time, including the cycling of potential nutrients, heat loss and volcanism.This view has been challenged by recent evidence for considerable diversity in volcanic and sedimentary rocks and processes on Mars. However, new understanding of the planet is hindered by a mismatch between Martian meteorites and rock types seen on the surface, as well as a lack of reliable age information that can be used to test how the crust, mantle and atmosphere have evolved and interacted through time. Addressing these issues is a primary aim of ongoing and new Mars exploration missions, including NASA InSight and Mars 2020 and the ESA ExoMars Rover, and also requires resolution of conundrums in the Martian meteorite collection.The UoP2 Mars Consortium brings together internationally leading expertise in Martian meteorites, radiometric dating and planetary geology to address these challenges. Two related projects will capitalize on conceptual and analytical advances in the laboratory analysis of planetary materials led by the applicants, as well as the rapidly growing inventory of Martian meteorites in collections around the world, to generate new datasets and knowledge. Project 1, entitled "Secular evolution of Martian magmatism" focuses on placing robust new age constraints on Martian volcanic processes. Previously, this has been very difficult because the samples have experience extreme compression and heating during impact events, which disturb the isotopic systems used for dating. We will overcome this using advances led by Darling in identifying nanoscale deformation features in dateable crystals that can be avoided or targeted for radiometric dating using the latest techniques in mass spectrometry. Project 2, entitled 'Martian Breccias; the missing link in the search for Meteorite Source Regions on Mars?' focuses on linking the meteoritic and remote sensing records to build a more complete picture of the Martian crust. This will be achieved by resolving the origin and spectral signature of newly discovered brecciated rocks that offer uniquely broad sampling of Martian crustal rocks through clasts of different origin, in combination with new and compiled data on the mineralogy and geochemistry for other Martian meteorite groupings.The results will lead to new holistic models for Martian geological evolution. This new knowledge will help to address one of the four Science Challenges of the STFC Science Roadmap1: How do stars and planetary systems develop and is life unique to our planet?
火星是否可能支持生命的问题已经推动了通过卫星和机器人任务对火星表面的深入探索。补充研究的重点是识别和了解来自火星的陨石,这是科学界唯一可以直接获得的地壳样本。总之,这些研究不仅寻求外星生命和可居住环境的迹象,而且试图了解地球如何随着时间的推移而变化:从地球非常熟悉的海洋和地貌的古代世界,到我们今天看到的寒冷,干燥,贫瘠的星球。为什么火星遵循着与地球截然不同的道路,这是我们理解类地行星演化的一个主要问题。火星是如何失去热量的?火山作用和火山释气作用随时间变化了吗?火山活动和地震活动还在继续吗?撞击坑是如何随着时间的推移塑造地球的?很明显,火星表面的大部分都非常古老,它的岩石保留了行星分离成地壳和地幔的直接证据。因此,火山活动被认为是由地幔柱驱动的,而不是像地球上那样由板块边界的构造力驱动的,并且随着地球的冷却,强度迅速降低到最低限度。与地球相比,这一相对简单的地质模型表明,随着时间的推移,火星表面、大气层和内部之间的交换率不断下降,包括潜在营养物质的循环、热量损失和火山活动,但最近的证据表明,火星上的火山岩和沉积岩以及过程具有相当大的多样性,这一观点受到了挑战。然而,对火星的新认识受到火星陨石和表面岩石类型之间不匹配的阻碍,以及缺乏可靠的年龄信息,这些信息可用于测试地壳,地幔和大气如何随着时间的推移而演变和相互作用。解决这些问题是正在进行的和新的火星探测任务的主要目标,包括NASA InSight和Mars 2020以及ESA ExoMars Rover,也需要解决火星陨石收集中的难题。UoP2火星联盟汇集了火星陨石,放射性测年和行星地质学方面的国际领先专业知识,以应对这些挑战。两个相关项目将利用申请人牵头的行星材料实验室分析中的概念和分析进展,以及世界各地收藏的迅速增加的火星陨石清单,以产生新的数据集和知识。项目1题为“火星岩浆活动的长期演变”,重点是对火星火山过程提出新的有力的年龄限制。以前,这是非常困难的,因为样品在撞击事件中经历了极端的压缩和加热,这会干扰用于测年的同位素系统。我们将克服这一点,使用Darling领导的进步,在确定纳米级变形特征的可定年晶体,可以避免或有针对性的辐射测年使用最新的质谱技术。项目2,题为“火星角砾岩:寻找火星陨石源区的缺失环节?“的重点是将陨石和遥感记录联系起来,以建立一个更完整的火星地壳图片。这将通过解析新发现的角砾岩的来源和光谱特征来实现,角砾岩通过不同来源的碎屑提供了独特的火星地壳岩石广泛样本,并结合新的和汇编的关于其他火星陨石群的矿物学和地球化学数据,其结果将导致火星地质演化的新的整体模型。这一新知识将有助于解决STFC科学路线图1的四个科学挑战之一:恒星和行星系统如何发展,生命是我们星球所独有的吗?
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring relationships between shock-induced microstructures and H2O and Cl in apatite grains from eucrite meteorites
- DOI:10.1016/j.gca.2021.03.018
- 发表时间:2021-03
- 期刊:
- 影响因子:5
- 作者:T. Barrett;A. Černok;G. Degli-Alessandrini;X. Zhao;M. Anand;I. Franchi;J. Darling
- 通讯作者:T. Barrett;A. Černok;G. Degli-Alessandrini;X. Zhao;M. Anand;I. Franchi;J. Darling
The impact history and prolonged magmatism of the angrite parent body
- DOI:10.1111/maps.14102
- 发表时间:2023-11
- 期刊:
- 影响因子:2.2
- 作者:B. G. Rider-Stokes;M. Anand;L. F. White;J. Darling;R. Tartèse;M. Whitehouse;I. Franchi;R. C. Greenwood;G. Degli-Alessandrini
- 通讯作者:B. G. Rider-Stokes;M. Anand;L. F. White;J. Darling;R. Tartèse;M. Whitehouse;I. Franchi;R. C. Greenwood;G. Degli-Alessandrini
The shocking state of apatite and merrillite in shergottite Northwest Africa 5298 and extreme nanoscale chlorine isotope variability revealed by atom probe tomography
- DOI:10.1016/j.gca.2020.11.007
- 发表时间:2021-01
- 期刊:
- 影响因子:5
- 作者:James Darling;L. White;T. Kizovski;A. Černok;D. Moser;K. Tait;J. Dunlop;B. Langelier;J. O. Douglas;X. Zhao;Ian A. Franchi;M. Anand
- 通讯作者:James Darling;L. White;T. Kizovski;A. Černok;D. Moser;K. Tait;J. Dunlop;B. Langelier;J. O. Douglas;X. Zhao;Ian A. Franchi;M. Anand
Dating Magmatism on Mars: Application of In-Situ and Microsampling Techniques for Shergottite Geochronology
火星岩浆作用测年:原位和微量采样技术在镁橄榄石地质年代学中的应用
- DOI:10.7939/r3-9a8a-2823
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sheen, Alex I-Fan
- 通讯作者:Sheen, Alex I-Fan
Decline of giant impacts on Mars by 4.48 billion years ago and an early opportunity for habitability
- DOI:10.1038/s41561-019-0380-0
- 发表时间:2019-07-01
- 期刊:
- 影响因子:18.3
- 作者:Moser, D. E.;Arcuri, G. A.;Davis, C.
- 通讯作者:Davis, C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Darling其他文献
Petrology and Geochronology of Metamorphic Zircon Petrology and Geochronology of Metamorphic Zircon
变质锆石岩石学和年代学 变质锆石岩石学和年代学
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Desmond E. Moser;F. Corfu;James Darling;Steven M. Reddy;Matthew J. Kohn;Nigel M. Kelly - 通讯作者:
Nigel M. Kelly
James Darling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Darling', 18)}}的其他基金
相似国自然基金
三维界面追踪和曲率估计的MARS理论框架及高精度保结构算法
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
单原子金属-二维CeO2杂化材料的液相等离子体制备及光增强Mars-Van Krevelen催化氧化研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
NAC及MARS与缺血性脑卒中的关联性分析和机制研究
- 批准号:22ZR1458100
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MARS算法的历史土壤数据更新方法研究
- 批准号:41601209
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Discovery Projects
RII Track-4:NSF:Planetary Robotic Construction on the Moon and Mars Using 3D Printed Waterless Concrete
RII Track-4:NSF:使用 3D 打印无水混凝土在月球和火星上进行行星机器人施工
- 批准号:
2327469 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Standard Grant
Non-Western Migration Regimes in a Global Perspective - MARS
全球视角下的非西方移民制度 - MARS
- 批准号:
EP/Z000416/1 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Research Grant
SBIR Phase I: Clean Iron and Nickel Powder Production for Steel Construction on the Meridiani Planum of Mars and Cathode Manufacture for Lithium-Ion Batteries on Earth
SBIR 第一阶段:火星子午线平原钢结构清洁铁镍粉生产和地球锂离子电池阴极制造
- 批准号:
2233554 - 财政年份:2023
- 资助金额:
$ 43.56万 - 项目类别:
Standard Grant
New insight into atmospheric seismology through the comparison of pressure and seismic data between the Earth and Mars
通过比较地球和火星之间的压力和地震数据,对大气地震学有了新的认识
- 批准号:
22KJ0745 - 财政年份:2023
- 资助金额:
$ 43.56万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Novel and Environmental-friendly Method for Temporary Underground Hydrogen Storage on the Earth, Moon, and Mars by Utilizing Nanobubbles
利用纳米气泡在地球、月球和火星上临时地下储氢的新型环保方法
- 批准号:
23K13698 - 财政年份:2023
- 资助金额:
$ 43.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploration of periglacial landforms and subsurface structures of terrestrial analog sites for estimation of subsurface ice distribution on Mars
探索陆地模拟地点的冰缘地貌和地下结构,以估计火星上地下冰的分布
- 批准号:
23H01232 - 财政年份:2023
- 资助金额:
$ 43.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
From Warm And Wet To Cold And Dry On Mars: Ancient Environments As Seen From A Rover Perspective
火星上从温暖潮湿到寒冷干燥:从漫游车的角度看古代环境
- 批准号:
2887718 - 财政年份:2023
- 资助金额:
$ 43.56万 - 项目类别:
Studentship
Water Ice Clouds in the Atmosphere of Mars
火星大气中的水冰云
- 批准号:
2801340 - 财政年份:2023
- 资助金额:
$ 43.56万 - 项目类别:
Studentship
Mechanochemical-UV generation of perchlorates and reactive nitrogen on Mars
火星上高氯酸盐和活性氮的机械化学-紫外线生成
- 批准号:
2889470 - 财政年份:2023
- 资助金额:
$ 43.56万 - 项目类别:
Studentship














{{item.name}}会员




