The Planet-Disk Connection: Accretion, Disk Structure, and Planet Formation
行星盘连接:吸积、盘结构和行星形成
基本信息
- 批准号:ST/S000399/1
- 负责人:
- 金额:$ 44.69万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"How do stars and planetary systems develop and is life exclusive to our planet?" is one of the major questions of humanity, and also one of the Science Challenges proposed by the STFC. In Dundee, we are a small but young and vibrant department with a strong focus in understanding the formation of stars and planets, and the group is growing within the larger context of the Scottish Universities Physics Alliance (SUPA) and the St Andrews Exoplanet Centre.Our main objective is to explore planet formation environments both observationally and computationally. Planets are born in protoplanetary disks formed around young stars, composed of gas and dust with sizes from very small particles to pebbles. We use multi-telescope, multi-wavelength data and a state-of-the-art computer simulations to track the formation of stars together with protoplanetary disks, to follow the evolution of disks as they disperse, and to study how planetary systems form and evolve out of a dissipating disk. One of the main problems of observationally studying the ongoing planet formation in disks is that the innermost part (which includes the habitable zone, the region where liquid water could enable planets to host life) is too small and too faint to be directly resolved even by the most powerful existing interferometers. Our project will develop special observational techniques to explore the conditions around young stars and in the innermost planet formation regions near the central stars, where many planets are now being discovered. Since observations of disks provide snapshots of disk evolution while observed exoplanets show the end state of planet formation, we also aim to connect the beginning and the end of planet formation (i.e. disks and planets) by using computer simulations, and will compare simulations with both observed disks and exoplanets. The first key is to explore the velocity and time dimension to track tiny spatial structures: using the Doppler effect and repeated observations over time, we can track the disk material as it orbits, spirals and accretes onto the central star, mapping the innermost regions at few stellar radii and determining the flow of matter throughout the disk. Both quantities are very important to explore whether the star will be quiescent enough in the future to allow for habitable planets, and the way matter moves through the disk in the planet-forming zone. It will also enable us to distinguish observational planetary signatures from those of accretion and activity and thus facilitate the detection of very young planets in the future. The second key is the "Rosseta Stone" technique, using observations at many different wavelengths (colours), taken with various telescopes. Similar to the different languages of the original Rosetta Stone, each wavelength tells us about aspects of the disk in a slightly different way. By combining them all for large numbers of objects, we can obtain an accurate picture of the global properties of protoplanetary disks and explore the signatures of planet formation. The third key is to use computer simulations to bridge the gap between protoplanetary disks and exoplanetary systems by exploring the formation of planets over a few million year timescale. We will construct a realistic disk model from our multi-wavelength observations for a large number of disks and use that as the starting point of planet formation simulations. We will then compare the properties of the simulated planetary systems with those of observed ones, which will also help us to rule out or confirm disk properties and physical processes that are not directly observable. Our goals are to put into context the known variety of planets by revealing from which kinds of disks they have originated, and to understand the observed variety of protoplanetary disks by exploring the effect of planet formation on the evolution of the disk.
“恒星和行星系统是如何发展的,生命是我们星球独有的吗?”是人类的主要问题之一,也是STFC提出的科学挑战之一。在邓迪,我们是一个小而年轻、充满活力的部门,专注于了解恒星和行星的形成,该小组在苏格兰大学物理联盟(SUPA)和圣安德鲁斯系外行星中心的更大背景下不断发展。我们的主要目标是从观测和计算两方面探索行星形成环境。行星是在年轻恒星周围形成的原行星盘中诞生的,由气体和尘埃组成,大小从非常小的颗粒到鹅卵石。我们使用多望远镜、多波长数据和最先进的计算机模拟来跟踪恒星和原行星盘的形成,跟踪盘在分散时的演化,并研究行星系统如何形成和演化出耗散盘。从观测上研究盘状行星形成的主要问题之一是,最里面的部分(包括宜居带,液态水可以使行星拥有生命的区域)太小太暗,即使是最强大的现有干涉仪也无法直接解析。我们的项目将开发特殊的观测技术,以探索年轻恒星周围的条件,以及中央恒星附近最内部的行星形成区域,现在许多行星都在这些区域被发现。由于对盘的观测提供了盘演化的快照,而观测到的系外行星则显示了行星形成的结束状态,因此我们还打算通过计算机模拟将行星形成的开始和结束(即盘和行星)联系起来,并将模拟与观测到的盘和系外行星进行比较。第一个关键是探索速度和时间维度来跟踪微小的空间结构:利用多普勒效应和随着时间的重复观察,我们可以跟踪盘状物质在轨道、螺旋和吸积到中央恒星时的轨迹,绘制出几个恒星半径处的最里面的区域,并确定物质在盘中的流动。这两个量对于探索恒星在未来是否足够静止,从而允许存在宜居行星,以及物质在行星形成区通过盘状结构的方式是非常重要的。它还将使我们能够区分观测到的行星特征与吸积和活动的特征,从而有助于在未来探测非常年轻的行星。第二个关键是“玫瑰石”技术,该技术利用不同望远镜拍摄的许多不同波长(颜色)的观测。与最初的罗塞塔石碑的不同语言类似,每个波长以略有不同的方式告诉我们关于圆盘的各个方面。通过将它们组合成大量的天体,我们可以获得原行星盘的全球性质的准确图像,并探索行星形成的特征。第三个关键是使用计算机模拟,通过探索数百万年时间尺度上行星的形成来弥合原行星盘和系外行星系统之间的差距。我们将从我们对大量圆盘的多波长观测中构建一个真实的圆盘模型,并将其作为行星形成模拟的起点。然后,我们将比较模拟的行星系统和观测到的行星系统的性质,这也将有助于我们排除或确认无法直接观察到的盘状性质和物理过程。我们的目标是通过揭示行星起源于哪些类型的圆盘来了解已知的行星种类,并通过探索行星形成对圆盘演化的影响来了解观察到的原行星圆盘的种类。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A survey for variable young stars with small telescopes: IV -- Rotation Periods of YSOs in IC5070
用小型望远镜观测变星年轻星:IV——IC5070中YSO的自转周期
- DOI:10.48550/arxiv.2107.08524
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Froebrich D
- 通讯作者:Froebrich D
The ODYSSEUS Survey. Motivation and First Results: Accretion, Ejection, and Disk Irradiation of CVSO 109
- DOI:10.3847/1538-3881/ac479d
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:C. Espaillat;G. Herczeg;T. Thanathibodee;C. Pittman;N. Calvet;N. Arulanantham;K. France;J. Serna;J. Hernández;Á. Kóspál;F. Walter;A. Frasca;W. Fischer;C. Johns–Krull;P. Schneider;C. Robinson;S. Edwards;P. Ábrahám;M. Fang;J. Erkal;C. Manara;J. Alcalá;E. Alecian;R. Alexander;J. Alonso-Santiago;S. Antoniucci;D. Ardila;A. Banzatti;M. Benisty;E. Bergin;K. Biazzo;C. Briceño;J. Campbell-White;L. Cleeves;D. Coffey;J. Eislöffel;S. Facchini;D. Fedele;E. Fiorellino;D. Froebrich;M. Gangi;T. Giannini;K. Grankin;H. M. Günther;Zhen Guo;L. Hartmann;L. Hillenbrand;P. Hinton;J. Kastner;C. Koen;K. Maucó;I. Mendigutía;B. Nisini;N. Panwar;D. Principe;M. Robberto;A. Sicilia-Aguilar;J. Valenti;J. Wendeborn;Jonathan P. Williams;Ziyan Xu;R. Yadav
- 通讯作者:C. Espaillat;G. Herczeg;T. Thanathibodee;C. Pittman;N. Calvet;N. Arulanantham;K. France;J. Serna;J. Hernández;Á. Kóspál;F. Walter;A. Frasca;W. Fischer;C. Johns–Krull;P. Schneider;C. Robinson;S. Edwards;P. Ábrahám;M. Fang;J. Erkal;C. Manara;J. Alcalá;E. Alecian;R. Alexander;J. Alonso-Santiago;S. Antoniucci;D. Ardila;A. Banzatti;M. Benisty;E. Bergin;K. Biazzo;C. Briceño;J. Campbell-White;L. Cleeves;D. Coffey;J. Eislöffel;S. Facchini;D. Fedele;E. Fiorellino;D. Froebrich;M. Gangi;T. Giannini;K. Grankin;H. M. Günther;Zhen Guo;L. Hartmann;L. Hillenbrand;P. Hinton;J. Kastner;C. Koen;K. Maucó;I. Mendigutía;B. Nisini;N. Panwar;D. Principe;M. Robberto;A. Sicilia-Aguilar;J. Valenti;J. Wendeborn;Jonathan P. Williams;Ziyan Xu;R. Yadav
STAR-MELT: STellar AccRetion-Mapping with Emission Line Tomography
STAR-MELT:使用发射线断层扫描进行恒星吸积映射
- DOI:10.5281/zenodo.4557018
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Campbell-White Justyn
- 通讯作者:Campbell-White Justyn
A survey for variable young stars with small telescopes - IV. Rotation periods of YSOs in IC 5070
用小型望远镜对变年轻恒星进行的调查 - IV。
- DOI:10.1093/mnras/stab2082
- 发表时间:2021
- 期刊:
- 影响因子:4.8
- 作者:Froebrich D
- 通讯作者:Froebrich D
Empirical Determination of the Lithium 6707.856 Å Wavelength in Young Stars
年轻恒星中锂 6707.856 × 波长的经验测定
- DOI:10.48550/arxiv.2303.03843
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Campbell-White Justyn
- 通讯作者:Campbell-White Justyn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aurora Sicilia-Aguilar其他文献
Aurora Sicilia-Aguilar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aurora Sicilia-Aguilar', 18)}}的其他基金
Reading between the lines: Translating light from science to art
字里行间:将光从科学转化为艺术
- 批准号:
ST/V002058/1 - 财政年份:2020
- 资助金额:
$ 44.69万 - 项目类别:
Research Grant
相似海外基金
Scaling Disk-Resident Learned Indexes For Database Systems
扩展数据库系统的磁盘驻留学习索引
- 批准号:
DP240101211 - 财政年份:2024
- 资助金额:
$ 44.69万 - 项目类别:
Discovery Projects
Live cell spinning disk confocal microscope with single molecule localization module
具有单分子定位模块的活细胞转盘共聚焦显微镜
- 批准号:
514497685 - 财政年份:2023
- 资助金额:
$ 44.69万 - 项目类别:
Major Research Instrumentation
Distinct Ion Channel Pools and Intercalated Disk Nanoscale Structure Regulate Cardiac Conduction
独特的离子通道池和闰盘纳米级结构调节心脏传导
- 批准号:
10676368 - 财政年份:2023
- 资助金额:
$ 44.69万 - 项目类别:
Effect of Particle Traps on the Disk Chemistry and the Future Composition of Planets
粒子陷阱对盘化学和行星未来组成的影响
- 批准号:
2881724 - 财政年份:2023
- 资助金额:
$ 44.69万 - 项目类别:
Studentship
A study on integrated nonreciprocal devices using disk resonators and magneto-optical materials
使用盘式谐振器和磁光材料的集成不可逆器件的研究
- 批准号:
23K03977 - 财政年份:2023
- 资助金额:
$ 44.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Radiation hydrodynamics simulations of photoevaporation and disk evolution
光蒸发和圆盘演化的辐射流体动力学模拟
- 批准号:
23KJ0459 - 财政年份:2023
- 资助金额:
$ 44.69万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Spinning disk confocal microscope for visualizing and quantifying host-bacteria interactions
用于可视化和量化宿主-细菌相互作用的转盘共聚焦显微镜
- 批准号:
527320650 - 财政年份:2023
- 资助金额:
$ 44.69万 - 项目类别:
Major Research Instrumentation
Highly Efficient Magnon-Mediated Microwave-to-Optical Converter Using a Disk-shaped Ferromagnetic Insulator
使用盘形铁磁绝缘体的高效磁振子介导微波光转换器
- 批准号:
23KJ1209 - 财政年份:2023
- 资助金额:
$ 44.69万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quantitative high-throughput spinning-disk confocal microscope
定量高通量转盘共焦显微镜
- 批准号:
512574446 - 财政年份:2023
- 资助金额:
$ 44.69万 - 项目类别:
Major Research Instrumentation
Spinning Disk Super Resolution Confocal Microscope for the Vanderbilt Brain Institute
范德比尔特脑研究所的转盘超分辨率共焦显微镜
- 批准号:
10721222 - 财政年份:2023
- 资助金额:
$ 44.69万 - 项目类别: