Novel optimization framework for real-time automated radiation therapy
实时自动放射治疗的新颖优化框架
基本信息
- 批准号:ST/S002197/1
- 负责人:
- 金额:$ 7.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The World Health Organization estimates that over 8 million people die of cancer every year, around 70% of them in low and middle income countries. Radiation therapy (RT), a process whereby x-ray or particle beams are used to kill specific cells in cancer patients, is one of the most commonly used and cost effective ways to help treat cancer patients. It is estimated that over 50% of all cancer patients may benefit from receiving RT during the course of their treatment, either on its own or in combination with surgery, chemotherapy, hormonal therapy, or immunotherapy. However, the delivery of radiation therapy treatment plans is time consuming, involves cumbersome treatment planning systems (TPS), is expensive both in terms of personnel and infrastructure, and can be hampered by inaccurate computational models. This makes the delivery of high-quality and affordable treatment a challenging task globally, but also one which disproportionally affects low and middle income countries. Further, while the availability of RT centres in North America, Europe, Japan and Australia is generally adequate to cover current needs, similar coverage remains poor in Africa (34% of estimated need covered) and in the wider Asia-Pacific region (61%). As a consequence, the majority of the global population does not have sufficient access to appropriate cancer treatment. Unless addressed, this situation is expected to worsen further given that cancer incidence rates are projected to grow significantly in low and middle income countries over the next decade. As such, increasing the availability of high-quality cancer treatment, and of RT in particular, is recognized as a key global and societal challenge. Within this context, making RT more widely available, increasingly accurate, faster, and more cost effective, will play an important part in addressing this challenge.The delivery of high-quality radiation therapy relies on accurate treatment planning systems to create appropriate radiation treatment plans (TP) across a spectrum of different cancer types. Optimizing these TP can require considerable computational resources and is often personnel-intensive. In this project we will develop a fully-automated treatment planning system prototype based on advanced optimization techniques and remote supercomputing, thus addressing an important difficulty in deploying RT systems in challenging and remote environments. The system will make use of a range of cutting-edge computational and machine learning techniques to optimize the efficiency and robustness of treatment planning systems, with the view to reduce infrastructure and personnel costs in radiation therapy centres, and to provide more flexibility for use where expertise and large-scale computational resources may not be readily available.
世界卫生组织估计,每年有超过 800 万人死于癌症,其中约 70% 生活在低收入和中等收入国家。放射治疗 (RT) 是一种使用 X 射线或粒子束杀死癌症患者体内特定细胞的过程,是帮助治疗癌症患者的最常用且最具成本效益的方法之一。据估计,超过 50% 的癌症患者可能会在治疗过程中受益于接受放疗,无论是单独放疗还是与手术、化疗、激素疗法或免疫疗法相结合。然而,放射治疗计划的实施非常耗时,涉及繁琐的治疗计划系统(TPS),在人员和基础设施方面都很昂贵,并且可能受到不准确的计算模型的阻碍。这使得提供高质量且负担得起的治疗成为全球一项艰巨的任务,而且对低收入和中等收入国家的影响也尤为严重。此外,虽然北美、欧洲、日本和澳大利亚的 RT 中心总体上足以满足当前需求,但非洲(覆盖估计需求的 34%)和更广泛的亚太地区(61%)的类似覆盖率仍然很低。因此,全球大多数人口无法充分获得适当的癌症治疗。如果不加以解决,鉴于未来十年低收入和中等收入国家的癌症发病率预计将大幅上升,这种情况预计将进一步恶化。因此,提高高质量癌症治疗,特别是放疗的可用性,被认为是全球和社会的一项关键挑战。在此背景下,使放疗变得更广泛、更准确、更快速且更具成本效益,将在应对这一挑战中发挥重要作用。高质量放射治疗的实施依赖于准确的治疗计划系统,以针对各种不同的癌症类型制定适当的放射治疗计划(TP)。优化这些 TP 可能需要大量的计算资源,并且通常需要大量人员。在这个项目中,我们将开发一个基于先进优化技术和远程超级计算的全自动治疗计划系统原型,从而解决在具有挑战性的远程环境中部署RT系统的一个重要困难。该系统将利用一系列尖端的计算和机器学习技术来优化治疗计划系统的效率和稳健性,以减少放射治疗中心的基础设施和人员成本,并在可能无法轻易获得专业知识和大规模计算资源的情况下提供更大的使用灵活性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suzanne Sheehy其他文献
PIP: A LOW ENERGY RECYCLING NON-SCALING FFAG FOR SECURITY AND MEDICINE
PIP:用于安全和医疗的低能量回收不结垢 FFAG
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Roger Barlow;T. Edgecock;Carol Johnstone;H. Owen;Suzanne Sheehy - 通讯作者:
Suzanne Sheehy
Suzanne Sheehy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suzanne Sheehy', 18)}}的其他基金
Robust Permanent Magnet Beam Delivery Systems for Medical Radiotherapy Linacs
用于医疗放射治疗直线加速器的坚固永磁束传输系统
- 批准号:
ST/S000224/1 - 财政年份:2018
- 资助金额:
$ 7.54万 - 项目类别:
Research Grant
LHComedy: UK - The creation of a sustainable interactive comedy show that guides the audience through the scientific methodology.
LHComedy:英国 - 创作可持续的互动喜剧节目,引导观众了解科学方法。
- 批准号:
ST/N001974/1 - 财政年份:2015
- 资助金额:
$ 7.54万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
内容分发网络中的P2P分群分发技术研究
- 批准号:61100238
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
- 批准号:10402036
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Randomized controlled trial of a novel digital health solution to enable remote fetal monitoring in high risk pregnancies
新型数字健康解决方案的随机对照试验,可在高风险妊娠中实现远程胎儿监测
- 批准号:
10490447 - 财政年份:2021
- 资助金额:
$ 7.54万 - 项目类别:
Randomized controlled trial of a novel digital health solution to enable remote fetal monitoring in high risk pregnancies
新型数字健康解决方案的随机对照试验,可在高风险妊娠中实现远程胎儿监测
- 批准号:
10242470 - 财政年份:2021
- 资助金额:
$ 7.54万 - 项目类别:
Randomized controlled trial of a novel digital health solution to enable remote fetal monitoring in high risk pregnancies
新型数字健康解决方案的随机对照试验,可在高风险妊娠中实现远程胎儿监测
- 批准号:
10682538 - 财政年份:2021
- 资助金额:
$ 7.54万 - 项目类别:
Development of a novel method to chart genomic localization of protein complexes in vivo
开发一种绘制蛋白质复合物体内基因组定位图的新方法
- 批准号:
9511383 - 财政年份:2018
- 资助金额:
$ 7.54万 - 项目类别:
Globally convergent optimization for data-dependent systems enabled through a novel data-driven branch-and-bound framework
通过新颖的数据驱动分支定界框架实现数据依赖系统的全局收敛优化
- 批准号:
1805724 - 财政年份:2018
- 资助金额:
$ 7.54万 - 项目类别:
Standard Grant
AIS: Collaborative Research: A Novel Intelligent Grid Optimization Architecture Using Hierarchical Multi-Agent Framework for Modern Sustainable Power Grid
AIS:协作研究:利用分层多代理框架实现现代可持续电网的新型智能电网优化架构
- 批准号:
1310709 - 财政年份:2013
- 资助金额:
$ 7.54万 - 项目类别:
Standard Grant
AIS: Collaborative Research: A Novel Intelligent Grid Optimization Architecture Using Hierarchical Multi-Agent Framework for Modern Sustainable Power Grid
AIS:协作研究:利用分层多代理框架实现现代可持续电网的新型智能电网优化架构
- 批准号:
1309911 - 财政年份:2013
- 资助金额:
$ 7.54万 - 项目类别:
Standard Grant
A novel thermodynamic bone remodeling framework for artificial joint optimization
用于人工关节优化的新型热力学骨重塑框架
- 批准号:
355434-2009 - 财政年份:2013
- 资助金额:
$ 7.54万 - 项目类别:
Discovery Grants Program - Individual
A novel thermodynamic bone remodeling framework for artificial joint optimization
用于人工关节优化的新型热力学骨重塑框架
- 批准号:
355434-2009 - 财政年份:2012
- 资助金额:
$ 7.54万 - 项目类别:
Discovery Grants Program - Individual
A novel thermodynamic bone remodeling framework for artificial joint optimization
用于人工关节优化的新型热力学骨重塑框架
- 批准号:
355434-2009 - 财政年份:2011
- 资助金额:
$ 7.54万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




