Crowdsourcing and Machine Learning for Disaster Relief and Resilience
众包和机器学习促进救灾和复原力
基本信息
- 批准号:ST/S00307X/1
- 负责人:
- 金额:$ 27.23万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project builds on a strong history of successful, impactful STFC-supported research, applying this research within the world-leading Zooniverse citizen science platform to humanitarian and disaster management issues in countries that require Official Development Assistance. The Planetary Response Network is a partnership led by the Zooniverse, the Machine Learning Group at the University of Oxford, and the response and resilience charity Rescue Global. Since 2015 the PRN has deployed crowdsourcing projects to classify multiple kinds of damage following major natural disasters in Nepal, Ecuador, and multiple Caribbean nations including Dominica and Antigua & Barbuda. This project seeks to improve on the successes of those projects by incorporating feedback from ground-responders partnered with Rescue Global and from a recent multi-agency report which clearly articulated the unique needs of crowdsourced projects in humanitarian response applications. Thanks to STFC support, the Zooniverse has well-established platform infrastructure that can fully address these needs; the modest additional support requested in this project will bring high value for money by adding targeted high-impact features to the Zooniverse platform. These features include a pipeline to rapidly process pre- and post-event satellite images into classifiable "subjects" for the crowd, application of STFC-supported machine learning research to pre-classification of images, incorporation of STFC-supported advanced algorithms for real-time human-machine classification, and intuitive visualisation of consensus results so that decision makers and responders on the ground can easily interpret damage maps and maximise situational awareness, leading to better allocation of resources and aid, faster restoration of infrastructure, and a significant positive impact on societies preparing for and recovering from natural disasters.
该项目建立在成功的,有影响力的STFC支持的研究的强大历史的基础上,在世界领先的Zooniverse公民科学平台内将这项研究应用于需要官方发展援助的国家的人道主义和灾害管理问题。行星响应网络是由Zooniverse,牛津大学机器学习小组以及响应和恢复慈善机构Rescue Global领导的合作伙伴关系。自2015年以来,PRN部署了众包项目,对尼泊尔、厄瓜多尔以及包括多米尼克和安提瓜和巴布达在内的多个加勒比国家发生重大自然灾害后的多种损失进行分类。该项目力求在这些项目取得成功的基础上加以改进,纳入与全球救援组织合作的地面应急人员的反馈意见,以及最近一份多机构报告的反馈意见,该报告明确阐述了众包项目在人道主义应急应用中的独特需求。得益于STFC的支持,Zooniverse拥有完善的平台基础设施,可以完全满足这些需求;本项目所需的适度额外支持将通过为Zooniverse平台添加有针对性的高影响力功能来实现高性价比。这些功能包括将活动前后的卫星图像快速处理为人群可分类的“主题”的管道,将STFC支持的机器学习研究应用于图像预分类,将STFC支持的高级算法用于实时人机分类,以及共识结果的直观可视化,以便决策者和地面响应者可以轻松地解释损害地图,提高对情况的认识,从而更好地分配资源和援助,更快地恢复基础设施,并对社会防备自然灾害和从自然灾害中恢复产生重大的积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brooke Simmons其他文献
OBSCURED GOODS ACTIVE GALACTIC NUCLEI AND THEIR HOST GALAXIES AT z < 1.25: THE SLOW BLACK HOLE GROWTH PHASE
z < 1.25 处的模糊物体活动星系核及其宿主星系:黑洞缓慢生长阶段
- DOI:
10.1088/0004-637x/734/2/121 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Brooke Simmons;J. V. Duyne;C. M. Urry;E. Treister;E. Treister;A. Koekemoer;N. Grogin - 通讯作者:
N. Grogin
Unleashing the Power of the Zooniverse: The 2021 Survey of Volunteers
释放 Zooniverse 的力量:2021 年志愿者调查
- DOI:
10.2139/ssrn.4830179 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Corey Jackson;Liz Dowthwaite;Ellie Jeong;L. Trouille;Lucy Fortson;C. Lintott;Brooke Simmons;Grant Miller - 通讯作者:
Grant Miller
The flowering time regulator FLK acts through the ROS scavenging gene CATALASE 2 in pathogen defense in arabidopsis
开花时间调节因子 FLK 通过拟南芥病原体防御中的活性氧清除基因过氧化氢酶 2 起作用
- DOI:
10.1016/j.plantsci.2025.112618 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:4.100
- 作者:
Matthew Fabian;Leah Vrydagh;Maria Cervasio;Brooke Simmons;Hua Lu - 通讯作者:
Hua Lu
Brooke Simmons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brooke Simmons', 18)}}的其他基金
Leading the Next Generation of Data-Driven Discoveries
引领下一代数据驱动的发现
- 批准号:
MR/T044136/1 - 财政年份:2021
- 资助金额:
$ 27.23万 - 项目类别:
Fellowship
Innovative Digital Citizen Science: Active Learning for Disaster Relief
创新数字公民科学:救灾主动学习
- 批准号:
BB/T018941/1 - 财政年份:2020
- 资助金额:
$ 27.23万 - 项目类别:
Research Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant