Theoretical Particle Physics at City, University of London

伦敦大学城市学院理论粒子物理学

基本信息

  • 批准号:
    ST/T000716/1
  • 负责人:
  • 金额:
    $ 5.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Particle physics is at a critical juncture. The LHC experiments have found the last missing element of the Standard Model: the Higgs boson, and placed stringent restrictions on new physics beyond. At the same time, in the theoretical physics community there are outstanding problems in our understanding of quantum gauge and gravity theories, which undoubtedly would benefit from new observations at the LHC and other experiments. This project will investigate two key problems in modern theoretical physics.Firstly, we will examine strongly coupled gauge theories using the so-called gauge/string correspondence. Much remains to be learnt about strongly coupled gauge theories. In recent years, there have been significant breakthroughs in understanding certain gauge theories using the gauge/string correspondence. In particular, our group has been at the forefront of developing mathematical tools known as integrability which provide us with a powerful tool with which to investigate strongly-interacting gauge theories with little supersymmetry as well as precision test holography. Our group has also been pioneering Lattice Field Theory methods for strings in holographic backgrounds. LFT is particularly effective, because the low-dimensionality of the string worldsheet (1+1d) and the anti-commuting scalar nature of Green-Schwarz fermions significantly reduce the processor power needed, while being applicable in a many physically-important holographic backgrounds. Low-supersymmetry gauge theories have also been shown, through the so-called dimer models to have intimate links to the mathematics of algebraic geometry and algebraic number theory. In this project we will significantly build on these results to exploit these new mathematical tools and methods to understand the strong-coupling dynamics of less supersymmetric gauge theories and their gauge/string dualities.Secondly, we will explore beyond-the-Standard-Model physics that can be obtained as a consistent low-energy theory from string theory. String theory has provided a framework for unifying gauge and gravity interactions into a single consistent quantum theory. One of the key challenges has been to identify particular examples of string theory compactifications which will lead to realistic low-energy physics. This has remained a major challenge since conventional algorithms have very long run-times. Our group has pioneered the use of novel Machine Learning methods to obtain high-precision, detailed information about stringy phenomenology models. In this project we will exploit these developments to systematically chart the String Theory Landscape. The remarkable speed of the new methods means that we can explore physical properties of string models that were completely out of reach with conventional algorithms. Additionally, because of our strong links with Data and Computer Science experts, we are in a unique position to exploit the synergies that will arise in this multi-disciplinary Theoretical Physics-focused collaboration and their potential impact on a much wider set of applications.The combined expertise of our group, our track-record and our international and UK collaborators, places us in an ideal position to achieve the goals set-out above.
粒子物理学正处于一个关键时刻。LHC实验发现了标准模型中最后一个缺失的元素:希格斯玻色子,并对新物理学施加了严格的限制。与此同时,在理论物理界,我们对量子规范和引力理论的理解存在着突出的问题,这无疑将受益于大型强子对撞机和其他实验的新观测。本计画将探讨现代理论物理中的两个关键问题。首先,我们将利用所谓的规范弦对应来探讨强耦合规范理论。关于强耦合规范理论还有许多东西要学。近年来,在利用规范弦对应来理解某些规范理论方面有了重大突破。特别是,我们的小组一直处于发展被称为可积性的数学工具的最前沿,这为我们提供了一个强大的工具来研究强相互作用的规范理论,几乎没有超对称性以及精确的测试全息。我们的小组也一直在开创全息背景下弦的格场论方法。LFT特别有效,因为弦世界表(1+1d)的低维性和格林-施瓦茨费米子的反对易标量性质显著降低了所需的处理器功率,同时适用于许多物理重要的全息背景。通过所谓的二聚体模型,低超对称规范理论也被证明与代数几何和代数数论的数学有着密切的联系。在这个项目中,我们将在这些结果的基础上,利用这些新的数学工具和方法来理解非超对称规范理论及其规范/弦对偶的强耦合动力学。其次,我们将探索超越标准模型的物理学,它可以从弦理论中得到一个相容的低能理论。弦理论提供了一个框架,把规范和引力相互作用统一到一个统一的量子理论中。关键的挑战之一是确定弦理论紧致化的具体例子,这将导致现实的低能物理。这仍然是一个重大挑战,因为传统的算法有很长的运行时间。我们的团队率先使用新颖的机器学习方法来获得关于弦现象学模型的高精度,详细的信息。在这个项目中,我们将利用这些发展来系统地绘制弦理论景观。新方法的惊人速度意味着我们可以探索弦模型的物理性质,这是传统算法完全无法实现的。此外,由于我们与数据和计算机科学专家的紧密联系,我们处于独特的位置,可以利用这种以多学科理论物理为重点的合作中产生的协同效应及其对更广泛应用的潜在影响。我们团队的专业知识,我们的跟踪记录以及我们的国际和英国合作者的综合优势,使我们处于实现上述目标的理想位置。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning Calabi-Yau hypersurfaces
  • DOI:
    10.1103/physrevd.105.066002
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    5
  • 作者:
    D. Berman;Yang-Hui He;Edward Hirst
  • 通讯作者:
    D. Berman;Yang-Hui He;Edward Hirst
Quiver mutations, Seiberg duality, and machine learning
  • DOI:
    10.1103/physrevd.102.086013
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Jiakang Bao;S. Franco;Yang-Hui He;Edward Hirst;Gregg Musiker;Yan Xiao
  • 通讯作者:
    Jiakang Bao;S. Franco;Yang-Hui He;Edward Hirst;Gregg Musiker;Yan Xiao
Euclidean D-branes in type IIB string theory on Calabi-Yau threefolds
Calabi-Yau 三重的 IIB 型弦理论中的欧几里得 D 膜
  • DOI:
    10.1007/jhep12(2021)044
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Alexandrov S
  • 通讯作者:
    Alexandrov S
D-instantons in Type IIA string theory on Calabi-Yau threefolds
Calabi-Yau 三重的 IIA 型弦理论中的 D 瞬时
  • DOI:
    10.1007/jhep11(2021)018
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Alexandrov S
  • 通讯作者:
    Alexandrov S
Analytic bootstrap and Witten diagrams for the ABJM Wilson line as defect CFT1
  • DOI:
    10.1007/jhep08(2020)143
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    L. Bianchi;Gabriel Bliard;V. Forini;L. Griguolo;D. Seminara
  • 通讯作者:
    L. Bianchi;Gabriel Bliard;V. Forini;L. Griguolo;D. Seminara
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bogdan Stefanski其他文献

Bogdan Stefanski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bogdan Stefanski', 18)}}的其他基金

Theoretical Particle Physics at City, University of London
伦敦大学城市学院理论粒子物理学
  • 批准号:
    ST/X000729/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Research Grant
Theoretical Particle Physics at City University London
伦敦城市大学理论粒子物理学
  • 批准号:
    ST/P000797/1
  • 财政年份:
    2017
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Research Grant
Theoretical Particle Physics at City University
城市大学理论粒子物理
  • 批准号:
    ST/L000482/1
  • 财政年份:
    2014
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Research Grant
The Mathematics of String Theory and Gauge Theory
弦理论和规范理论的数学
  • 批准号:
    EP/J021512/1
  • 财政年份:
    2012
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Research Grant
Theoretical Particle Physics at City University
城市大学理论粒子物理
  • 批准号:
    ST/J00037X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Research Grant
16 Supersymmetries - a half-way meeting in the City
16个超对称——城市的中途相遇
  • 批准号:
    EP/I001638/1
  • 财政年份:
    2010
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Research Grant
Unravelling the Non-Perturbative Structure of Gauge Theory
揭示规范理论的非微扰结构
  • 批准号:
    EP/C539532/2
  • 财政年份:
    2009
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Fellowship
Unravelling the Non-Perturbative Structure of Gauge Theory
揭示规范理论的非微扰结构
  • 批准号:
    EP/C539532/1
  • 财政年份:
    2006
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Fellowship

相似国自然基金

环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
  • 批准号:
    11905220
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
  • 批准号:
    21902147
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
  • 批准号:
    30560052
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Theoretical Particle Physics at City, University of London
伦敦大学城市学院理论粒子物理学
  • 批准号:
    ST/X000729/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Research Grant
Theoretical Particle Physics and Cosmology
理论粒子物理和宇宙学
  • 批准号:
    ST/X000648/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Research Grant
Theoretical Particle Physics
理论粒子物理
  • 批准号:
    2309456
  • 财政年份:
    2023
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Continuing Grant
Theoretical Particle Physics and Cosmology at UC Irvine
加州大学欧文分校理论粒子物理和宇宙学
  • 批准号:
    2210283
  • 财政年份:
    2022
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Continuing Grant
ExaTEPP: Theoretical and Experimental Particle Physics at the Exascale Frontier
ExaTEPP:百亿亿次前沿的理论和实验粒子物理
  • 批准号:
    EP/X01696X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Research Grant
Theoretical Particle Physics
理论粒子物理
  • 批准号:
    CRC-2018-00086
  • 财政年份:
    2022
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Canada Research Chairs
Theoretical Particle Physics
理论粒子物理
  • 批准号:
    CRC-2018-00086
  • 财政年份:
    2021
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Canada Research Chairs
Theoretical Particle Physics
理论粒子物理
  • 批准号:
    1000232253-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Canada Research Chairs
Theoretical Particle Physics
理论粒子物理
  • 批准号:
    2014071
  • 财政年份:
    2020
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Continuing Grant
Theoretical Particle Physics
理论粒子物理
  • 批准号:
    1000232253-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 5.19万
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了