The Mathematics of String Theory and Gauge Theory
弦理论和规范理论的数学
基本信息
- 批准号:EP/J021512/1
- 负责人:
- 金额:$ 2.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will cover the costs of organizing a workshop to be held between the 3rd and the 5th of May 2012 at City University London and King's College London. The overarching theme of the meeting will be the recent advances in mathematics that have a close connection to string theory and quantum field theories. We aim to bring together the leading international researchers in the field to present their latest results, analyze the state-of-the-art of the field, and inspire collaborations to identify and tackle the outstanding problems in this research area. The interface between mathematics on the one hand and string theory and quantum field theories on the other, has often given rise to novel advances in mathematics, such as mirror symmetry, Seiberg-Witten invariants, or the study of integrable systems. Quantum field theories can have local, or gauge, symmetries, which provide them with a particularly rich mathematical structure. String theory has provided novel ways of tackling long-standing problems in this area, for example through the study of dualities between gauge theories or the gauge/string correspondence. However, many questions about gauge theories remain unanswered. There is a shared recognition amongst many mathematicians and physicists that new insights into these questions are likely to lead to profound new developments in both disciplines in the future. Understanding the non-perturbative properties of gauge theories has been identified as a key problem of modern mathematics - indeed the solution of the four-dimensional Yang-Mills theory is one of the Clay Institute's Millennium Mathematics prizes.Recently, significant new advances have occurred which have allowed mathematicians and physicists to address some of the long-standing gaps in our understanding of quantum gauge theories. To name just three: Firstly, localisation techniques have been used to compute the partition functions of supersymmetric gauge theories on S^4 or S^3, allowing for not only a much better handle on these gauge theories, but also allowing for the calculation of related mathematical invairants such as the Khovanov-Rozansky homology. Secondly, the AdS/CFT correspondence has recently led to both a study of sophisticated geometrical structures using advanced techniques such as equivariant localisation on symplectic manifolds and an investigation of new integrable systems and their Yangian representations. Thirdly, the investigation of supersymmetric vacua and operators of gauge theories has, in the last year or two, been given a new impetus as a result of our improved understanding of stable objects in the derived category of coherent sheafs on the one hand and a way to implement a type of deformation quantisation of the integrable structure underlyig the vacua of supersymmetric gauge theories. The proposed meeting will focus on four areas in which such novel developments have recently taken place:- Localisation, geometrical invariants and supersymmetric gauge theories.- The AdS/CFT correspondence.- Supersymmetric vacua and operators of gauge theories.- New integrable systems and strongly coupled gauge theories.We have chosen these four topics not only because there have been considerable advances in the recent year or two but also because we think there is considerable scope for the ideas from one area to benefit from interactions with another, and may stimulate further significant breakthroughs.
这笔赠款将用于支付2012年5月3日至5日在伦敦城市大学和伦敦国王学院举办研讨会的费用。会议的首要主题将是与弦理论和量子场论密切相关的数学最新进展。我们的目标是汇集该领域领先的国际研究人员,展示他们的最新成果,分析该领域的最新技术,并激发合作,以确定和解决该研究领域的突出问题。数学与弦论和量子场论之间的接口,经常会带来数学上的新进展,例如镜像对称、塞伯格-威滕不变量或可积系统的研究。量子场论可以有局部的或规范的对称性,这为它们提供了一个特别丰富的数学结构。弦理论提供了解决这个领域长期存在的问题的新方法,例如通过研究规范理论之间的对偶性或规范/弦对应。然而,有关规范理论的许多问题仍然没有得到解答。许多数学家和物理学家都认识到,对这些问题的新见解可能会在未来导致这两个学科的深刻发展。理解规范理论的非微扰性质已经被认为是现代数学的一个关键问题--四维杨-米尔斯理论的解是克莱研究所的千禧年数学奖之一。最近,一些重大的新进展使得数学家和物理学家能够解决我们对量子规范理论理解中的一些长期空白。仅举三例:首先,局域化技术已经被用来计算S^4或S^3上超对称规范理论的配分函数,这不仅使我们能够更好地处理这些规范理论,而且还允许计算相关的数学不变量,如霍瓦诺夫-罗赞斯基同调。其次,AdS/CFT对应最近导致了复杂的几何结构的研究,使用先进的技术,如等变局部化辛流形和调查新的可积系统及其Yangian表示。第三,超对称真空和规范理论算子的研究,在过去的一两年里,由于我们对相干层导出范畴中的稳定对象的理解的提高,以及实现超对称规范理论真空下可积结构的变形量子化的方法,得到了新的推动。拟议的会议将集中在四个领域,其中这种新的发展最近发生:-本地化,几何不变量和超对称规范理论。AdS/CFT通信。超对称真空和规范理论的算子。新的可积系统和强耦合规范理论。我们选择这四个主题不仅是因为在最近一两年里有相当大的进展,而且因为我们认为一个领域的思想有相当大的空间从与另一个领域的相互作用中受益,并可能激发进一步的重大突破。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bogdan Stefanski其他文献
Bogdan Stefanski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bogdan Stefanski', 18)}}的其他基金
Theoretical Particle Physics at City, University of London
伦敦大学城市学院理论粒子物理学
- 批准号:
ST/X000729/1 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Research Grant
Theoretical Particle Physics at City, University of London
伦敦大学城市学院理论粒子物理学
- 批准号:
ST/T000716/1 - 财政年份:2020
- 资助金额:
$ 2.16万 - 项目类别:
Research Grant
Theoretical Particle Physics at City University London
伦敦城市大学理论粒子物理学
- 批准号:
ST/P000797/1 - 财政年份:2017
- 资助金额:
$ 2.16万 - 项目类别:
Research Grant
Theoretical Particle Physics at City University
城市大学理论粒子物理
- 批准号:
ST/L000482/1 - 财政年份:2014
- 资助金额:
$ 2.16万 - 项目类别:
Research Grant
Theoretical Particle Physics at City University
城市大学理论粒子物理
- 批准号:
ST/J00037X/1 - 财政年份:2011
- 资助金额:
$ 2.16万 - 项目类别:
Research Grant
16 Supersymmetries - a half-way meeting in the City
16个超对称——城市的中途相遇
- 批准号:
EP/I001638/1 - 财政年份:2010
- 资助金额:
$ 2.16万 - 项目类别:
Research Grant
Unravelling the Non-Perturbative Structure of Gauge Theory
揭示规范理论的非微扰结构
- 批准号:
EP/C539532/2 - 财政年份:2009
- 资助金额:
$ 2.16万 - 项目类别:
Fellowship
Unravelling the Non-Perturbative Structure of Gauge Theory
揭示规范理论的非微扰结构
- 批准号:
EP/C539532/1 - 财政年份:2006
- 资助金额:
$ 2.16万 - 项目类别:
Fellowship
相似国自然基金
带应力string方法及其在材料计算中的应用
- 批准号:11001244
- 批准年份:2010
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
- 批准号:
2890913 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Studentship
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Continuing Grant
Enlarging the string theory landscape
扩大弦理论的前景
- 批准号:
23KF0214 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ensemble averages in string theory and the AdS/BCFT correspondence
弦理论中的系综平均值和 AdS/BCFT 对应关系
- 批准号:
23KJ1337 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Standard Grant
Generalized dualities and compactifications in string theory
弦理论中的广义对偶性和紧化
- 批准号:
23K03391 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in String Theory and Quantum Field Theory
弦论和量子场论主题
- 批准号:
2310635 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Standard Grant
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
2310588 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Standard Grant
Physical Mathematics: String Theory, Quantization and Geometry
物理数学:弦理论、量化和几何
- 批准号:
SAPIN-2018-00029 - 财政年份:2022
- 资助金额:
$ 2.16万 - 项目类别:
Subatomic Physics Envelope - Individual