Quantum Sensing for the Hidden Sector (QSHS)

隐藏领域的量子传感 (QSHS)

基本信息

  • 批准号:
    ST/T006102/1
  • 负责人:
  • 金额:
    $ 76.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Identifying the nature of the dark matter that dominates the mass distribution of galaxies and that plays a key role in our understanding of cosmology is a central unsolved problem of modern physics. Attention over the past 30+ years has focused on weakly interacting dark matter (WIMPs); however, a smaller but active community has been searching instead for 'hidden-sector' particles, including the 'QCD axion', using some of the world's most sensitive electronics. Axions were invoked to solve the so-called strong-CP problem, whereby the theory governing strong interactions is far more symmetric than our current theory, quantum chromodynamics, say it should be. But axions also turn out to be a natural candidate for the mysterious dark matter. Theory suggests that axions should be detectable through the tiny signals they emit, about a millionth of an attowatt, while traversing a microwave cavity in a strong magnetic field. These signals are at the limit of what can be detected using even cryogenically-cooled ultra-low-noise electronics, but in the past few years, rapid progress in developing newer and more sensitive quantum sensors, fueled by parallel research in quantum computing and measurement, has placed the detection of axions within our reach. The UK has considerable expertise in these new quantum devices, and this proposal aims to apply these pivotal new measurement technologies to the search for hidden sector particles. Our proposed search has two main parts. First, we have reached out to the world's most sensitive axion search experiment, ADMX, proposing to form a UK-USA collaboration. ADMX has welcomed this approach, and is keenly encouraging our participation. The UK will design and install a new axion detector inside the magnet and cryostat that ADMX already operate. Using this detector, we will search for axions in our Galaxy's dark matter halo in a previously unexplored mass range between 25 and 40 micro-electron volts. This range is well matched to indications from current theories of what the axion mass might be, although the possible range of masses is far larger, and so there is a great deal of ground to cover. The UK instrument will have at its heart one of our own superconducting quantum measurement technologies - a bolometric detector, a coherent parametric amplifier, a SQUID based amplifier, or a qubit based photon counting device. The technology to be used will be selected after extensive characterisation at participating institutes. The chosen technology will then be integrated into the ADMX instrument module, which will be characterised in a dedicated 10 mK cryostat at the University of Sheffield. This same cryostat will then double as the first target in the UK high-field low-temperature test facility that forms the second part of our proposal.Second, an internationally competitive UK effort in hidden sector physics needs a world class UK facility incorporating an extremely high field magnet: several times larger than those used for MRI imaging in health care. Such a magnet is necessary for axion searches, and axions are arguably the best motivated hidden sector dark matter candidate. The bore of the magnet needs to be very cold for the quantum electronics to work, about 10mK. We will partner with a national laboratory to build and operate a UK facility meeting these specifications. Many hidden sector search experiments could be housed in this facility, but the first one will be our own low-temperature quantum-spectrometer.Finally, to help maintain the UK's international prominence in fundamental physics, we must create a research community. Hidden sector physics is a rapidly growing subject, and the discovery of a whole new class of particles would drive particle physics into a new era, and quantum electronics into new applications and markets. We believe that the technology and techniques developed will have applications in areas as diverse as quantum computing, communications and radar.
暗物质主导着星系的质量分布,在我们对宇宙学的理解中起着关键作用,确定暗物质的性质是现代物理学中一个尚未解决的核心问题。过去30多年的注意力集中在弱相互作用暗物质(wimp)上;然而,一个较小但活跃的团体一直在使用世界上一些最敏感的电子设备寻找“隐藏区”粒子,包括“QCD轴子”。轴子被用来解决所谓的强cp问题,根据这个问题,控制强相互作用的理论比我们目前的量子色动力学理论要对称得多。但轴子也被证明是神秘暗物质的自然候选者。理论认为,当轴子在强磁场中穿过微波腔时,它们发出的微弱信号(约为百万分之一阿瓦)应该可以被探测到。即使使用低温冷却的超低噪声电子设备也无法探测到这些信号,但在过去的几年里,在量子计算和测量的并行研究的推动下,开发更新、更灵敏的量子传感器的快速进展,已经使我们能够探测轴子。英国在这些新型量子设备方面拥有相当多的专业知识,该提案旨在将这些关键的新测量技术应用于寻找隐藏的扇形粒子。我们建议的搜索有两个主要部分。首先,我们联系了世界上最敏感的轴子搜索实验机构ADMX,提议与英国和美国合作。ADMX欢迎这种做法,并强烈鼓励我们的参与。英国将设计并安装一个新的轴子探测器在磁铁和低温恒温器,ADMX已经运行。使用这个探测器,我们将在银河系暗物质晕中寻找轴子,其质量范围在25到40微电子伏特之间,这是以前未被探索过的。这个范围与目前关于轴子质量可能是多少的理论很好地吻合,尽管可能的质量范围要大得多,因此还有很多工作要做。英国仪器的核心将是我们自己的超导量子测量技术之一-一个热测量探测器,一个相干参数放大器,一个基于SQUID的放大器,或一个基于量子比特的光子计数装置。所使用的技术将在参与机构进行广泛的特征描述后进行选择。选定的技术将集成到ADMX仪器模块中,该模块将在谢菲尔德大学的专用10mk低温恒温器中进行表征。这个低温恒温器将作为英国高场低温测试设施的第一个目标,这是我们提案的第二部分。其次,要想在隐藏领域的物理领域取得国际竞争力,英国需要一个世界级的设施,其中包括极高磁场的磁铁:比医疗领域用于核磁共振成像的磁铁大几倍。这样的磁体对于寻找轴子是必要的,轴子可以说是最有动力的隐藏区域暗物质候选者。磁体的孔需要非常冷才能使量子电子工作,大约10mK。我们将与一个国家实验室合作,建立和运营一个符合这些规范的英国设施。许多隐藏扇区搜索实验可以在这个设施中进行,但第一个实验将是我们自己的低温量子光谱仪。最后,为了保持英国在基础物理学领域的国际地位,我们必须建立一个研究共同体。隐藏领域物理学是一门快速发展的学科,发现一类全新的粒子将推动粒子物理学进入一个新时代,量子电子学将进入新的应用和市场。我们相信,所开发的技术和技术将在量子计算、通信和雷达等多种领域得到应用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Searching for wave-like dark matter with QSHS
用 QSHS 寻找波状暗物质
  • DOI:
    10.21468/scipostphysproc.12.040
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bailey I
  • 通讯作者:
    Bailey I
Primordial black hole dark matter in the context of extra dimensions
  • DOI:
    10.1103/physrevd.105.103508
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Avi Friedlander;K. Mack;Sarah Schon;N. Song;A. Vincent
  • 通讯作者:
    Avi Friedlander;K. Mack;Sarah Schon;N. Song;A. Vincent
Can the displacemon device test objective collapse models?
  • DOI:
    10.1116/5.0073626
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lydia A. Kanari-Naish;Jack Clarke;M. Vanner;E. Laird
  • 通讯作者:
    Lydia A. Kanari-Naish;Jack Clarke;M. Vanner;E. Laird
Quantum Sensors for the Hidden Sector (QSHS) - A Summary of Our First Year!
隐藏部门的量子传感器 (QSHS) - 我们第一年的总结!
  • DOI:
    10.33774/coe-2022-p4rwf
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bailey I
  • 通讯作者:
    Bailey I
Superconductivity: the path of least resistance to the future
超导:通往未来阻力最小的道路
  • DOI:
    10.1080/00107514.2023.2259654
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Mercer W
  • 通讯作者:
    Mercer W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuri Pashkin其他文献

Magnetic Field Stabilization of a SINIS single electron pump
SINIS 单电子泵的磁场稳定
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuji Nakamura;Yuri Pashkin;Jaw-Shen Tsai and Nobuhisa Kaneko
  • 通讯作者:
    Jaw-Shen Tsai and Nobuhisa Kaneko
Single Electron Pumping By using a SINIS Turnstile
使用 SINIS 旋转门进行单电子泵浦
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuji Nakamura;Yuri Pashkin;Jaw-Shen Tsai and Nobuhisa Kaneko
  • 通讯作者:
    Jaw-Shen Tsai and Nobuhisa Kaneko
一過性の低酸素曝露が最大運動時の酸素摂取動態および筋酸素化動態に及ぼす影響
瞬时低氧暴露对最大运动期间摄氧动态和肌肉氧合动态的影响
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuji Nakamura;Yuri Pashkin;Jaw-Shen Tsai and Nobuhisa Kaneko;黄忠,西脇雅人,萩原正大
  • 通讯作者:
    黄忠,西脇雅人,萩原正大
磁場で誘起された渦糸によるSINIS単電子ポンプの安定化
磁场诱导涡旋稳定 SINIS 单电子泵
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中村秀司;Yuri Pashkin;蔡兆申;金子 晋久
  • 通讯作者:
    金子 晋久
Single electron pump towards a quantum current standard
迈向量子电流标准的单电子泵
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuji Nakamura;Yuri Pashkin;Jaw-Shen Tsai and Nobuhisa Kaneko;黄忠,西脇雅人,萩原正大;Shuji Nakamura
  • 通讯作者:
    Shuji Nakamura

Yuri Pashkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

病原菌群体感应监管(policing quorum sensing)的生理生态机理及分子调控机制
  • 批准号:
    31570490
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于Compressive sensing理论的单探测器太赫兹成像技术
  • 批准号:
    60977009
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
水稻OsCAS(Calcium-sensing Receptor)基因的功能分析
  • 批准号:
    30900771
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
  • 批准号:
    60776795
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    联合基金项目
生防假单胞菌群体感应(quorum-sensing)系统的鉴定和功能分析
  • 批准号:
    30370952
  • 批准年份:
    2003
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Sensing for the Hidden Sector (QSHS)
隐藏领域的量子传感 (QSHS)
  • 批准号:
    ST/T006145/2
  • 财政年份:
    2023
  • 资助金额:
    $ 76.01万
  • 项目类别:
    Research Grant
Collaborative Research: Revealing the hidden groundwater storage dynamics of the Great Lakes Basin by synthesizing geodesy, hydrologic modeling, and remote sensing
合作研究:通过综合大地测量学、水文建模和遥感,揭示五大湖盆地隐藏的地下水储量动态
  • 批准号:
    2218194
  • 财政年份:
    2022
  • 资助金额:
    $ 76.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing the hidden groundwater storage dynamics of the Great Lakes Basin by synthesizing geodesy, hydrologic modeling, and remote sensing
合作研究:通过综合大地测量学、水文建模和遥感,揭示五大湖盆地隐藏的地下水储量动态
  • 批准号:
    2217994
  • 财政年份:
    2022
  • 资助金额:
    $ 76.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing the hidden groundwater storage dynamics of the Great Lakes Basin by synthesizing geodesy, hydrologic modeling, and remote sensing
合作研究:通过综合大地测量学、水文建模和遥感,揭示五大湖盆地隐藏的地下水储量动态
  • 批准号:
    2218049
  • 财政年份:
    2022
  • 资助金额:
    $ 76.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing the hidden groundwater storage dynamics of the Great Lakes Basin by synthesizing geodesy, hydrologic modeling, and remote sensing
合作研究:通过综合大地测量学、水文建模和遥感,揭示五大湖盆地隐藏的地下水储量动态
  • 批准号:
    2218244
  • 财政年份:
    2022
  • 资助金额:
    $ 76.01万
  • 项目类别:
    Standard Grant
Precision Farming of the Hidden Half: Integrating Roots into Agriculture using Remote Sensing
隐秘的精准农业:利用遥感将根源融入农业
  • 批准号:
    DGECR-2022-00157
  • 财政年份:
    2022
  • 资助金额:
    $ 76.01万
  • 项目类别:
    Discovery Launch Supplement
Precision Farming of the Hidden Half: Integrating Roots into Agriculture using Remote Sensing
隐秘的精准农业:利用遥感将根源融入农业
  • 批准号:
    RGPNS-2022-04861
  • 财政年份:
    2022
  • 资助金额:
    $ 76.01万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
Precision Farming of the Hidden Half: Integrating Roots into Agriculture using Remote Sensing
隐秘的精准农业:利用遥感将根源融入农业
  • 批准号:
    RGPIN-2022-04861
  • 财政年份:
    2022
  • 资助金额:
    $ 76.01万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Revealing the Hidden Groundwater Storage Dynamics of the Great Lakes Basin by Synthesizing Geodesy, Hydrologic Modeling, and Remote Sensing
合作研究:综合大地测量学、水文模型和遥感揭示五大湖盆地隐藏的地下水储量动态
  • 批准号:
    2218518
  • 财政年份:
    2022
  • 资助金额:
    $ 76.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing the hidden groundwater storage dynamics of the Great Lakes Basin by synthesizing geodesy, hydrologic modeling, and remote sensing
合作研究:通过综合大地测量学、水文建模和遥感,揭示五大湖盆地隐藏的地下水储量动态
  • 批准号:
    2218028
  • 财政年份:
    2022
  • 资助金额:
    $ 76.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了