Determination of Absolute Neutrino Mass Using Quantum Technologies

使用量子技术测定中微子绝对质量

基本信息

  • 批准号:
    ST/T006137/1
  • 负责人:
  • 金额:
    $ 105.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The neutrino is the most abundant matter particle in the universe, and yet we do not know how much it weighs. We know that this particle, which carries 99% of the energy released in supernova explosions and has played an important role in the evolution of the early universe, has an anomalously small mass but we also know that it cannot weigh nothing. It is therefore imperative that we measure this, the last unknown mass in the Standard Model of particle physics.We cannot measure the neutrino mass directly in the laboratory. Rather, we try to constrain as precisely as possible the energy that has gone into creating the neutrino in processes such as nuclear beta-decay. Einstein's famous equation then tells us how to calculate the neutrino mass. Since the neutrino escapes undetected, the experimental task involved in measuring the minimum neutrino energy is actually to measure the maximum energy carried by all of the other particles. The most promising system to use is tritium, in which the proton inside a normal hydrogen nucleus is accompanied by two neutrons. Tritium beta-decays with a half-life of 12.3 years and a very small decay energy of 18.6 kilo-electron-volts; the fact that this decay energy is so small makes it uniquely sensitive to the tiny neutrino mass.We will need to develop techniques for trapping very large populations of tritium and measuring with exquisite sensitivity the energy of beta-decay electrons. As a first step we will use deuterium, which is much easier to handle than radioactive tritium. We will magnetically decelerate beams of deuterium into very well characterised magnetic traps. Electrons generated inside the trap will undergo circular motion and in so doing will emit microwave radiation. We will develop the quantum sensors that are capable of detecting the vanishingly low-power signals that are generated in this way. The ultimate aim of this project is to show that we have, in principle, the technologies required for a much larger experiment that would have sensitivity to all possible values of the neutrino mass. Such an experiment could perhaps be hosted in the UK where, at the Culham Centre for Fusion Energy, world-leading facilities for handling large tritium inventories exist and are being further developed.
中微子是宇宙中最丰富的物质粒子,但我们不知道它有多重。我们知道这种粒子携带着超新星爆炸释放的99%的能量,在早期宇宙的演化中发挥了重要作用,它的质量非常小,但我们也知道它不可能没有重量。因此,我们必须测量中微子的质量,这是粒子物理学标准模型中最后一个未知的质量,我们不能在实验室中直接测量中微子的质量。相反,我们试图尽可能精确地限制在核β衰变等过程中产生中微子的能量。爱因斯坦著名的方程告诉我们如何计算中微子的质量。由于中微子的逃逸未被发现,测量中微子最小能量的实验任务实际上是测量所有其他粒子携带的最大能量。最有希望使用的系统是氚,其中正常氢核内的质子伴随着两个中子。氚β衰变的半衰期为12.3年,衰变能量很小,只有18.6千电子伏;衰变能量如此之小,使它对微小的中微子质量特别敏感,我们需要发展技术来捕获大量的氚,并以极高的灵敏度测量β衰变电子的能量。作为第一步,我们将使用氘,它比放射性氚更容易处理。我们将用磁力使氘束减速,使其进入特征很好的磁阱。陷阱内产生的电子将进行圆周运动,并在此过程中发射微波辐射。我们将开发能够检测以这种方式产生的消失的低功率信号的量子传感器。这个项目的最终目的是表明,我们在原则上拥有更大规模实验所需的技术,对中微子质量的所有可能值都具有灵敏度。这样的实验也许可以在英国进行,在英国的卡勒姆聚变能源中心,有世界领先的处理大量氚库存的设施,并正在进一步发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ling Hao其他文献

Exploring the Effects of Contextual Factors on Residential Land Prices Using an Extended Geographically and Temporally Weighted Regression Model
使用扩展的地理和时间加权回归模型探索背景因素对住宅土地价格的影响
  • DOI:
    10.3390/land10111148
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhengyuan Chai;Yi Yang;Yangyang Zhao;Yonghu Fu;Ling Hao
  • 通讯作者:
    Ling Hao
Development and Comparative Evaluation of Endolysosomal Proximity Labeling-based Proteomic Methods in Human iPSC-derived Neurons
人 iPSC 衍生神经元中基于内溶酶体邻近标记的蛋白质组学方法的开发和比较评估
  • DOI:
    10.1101/2020.09.15.298091
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashley M. Frankenfield;Michael S. Fernandopulle;Saadia Hasan;Michael E. Ward;Ling Hao
  • 通讯作者:
    Ling Hao
sPLA2-IIA modifies progranulin deficiency phenotypes in mouse models
  • DOI:
    10.1186/s13024-025-00863-8
  • 发表时间:
    2025-06-17
  • 期刊:
  • 影响因子:
    17.500
  • 作者:
    Cha Yang;Huan Du;Gwang Bin Lee;Masaaki Uematsu;Weiguo He;Etienne Doré;Weizhi Yu;Ethan J. Sanford;Marcus B. Smolka;Eric Boilard;Jeremy M. Baskin;Ling Hao;Fenghua Hu
  • 通讯作者:
    Fenghua Hu
[Epidemiological study on reduced folate carrier gene(RFC1 A80G) polymorphism and other risk factors of neural tube defects].
减少叶酸携带基因(RFC1 A80G)多态性及神经管缺陷其他危险因素的流行病学研究
Simple and Shortcut Method for Evaluating and Guiding the Removal of Degradation Products, Improving Solvent Performance, and Reducing Regeneration Energy
评价和指导降解产物去除、改善溶剂性能、降低再生能耗的简单快捷的方法
  • DOI:
    10.1021/acs.iecr.0c05762
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Ling Hao;Mao Qiufeng;Liu Sen;Gao Hongxia;Lv Juan;Mao Yu;Liang Zhiwu
  • 通讯作者:
    Liang Zhiwu

Ling Hao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ling Hao', 18)}}的其他基金

CAREER: Advancing Proximity Labeling Mass Spectrometry to Characterize Neuronal Mitochondrial Dynamics
职业:推进邻近标记质谱分析来表征神经元线粒体动力学
  • 批准号:
    2239214
  • 财政年份:
    2023
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Continuing Grant
Quantum Sensing for the Hidden Sector (QSHS)
隐藏领域的量子传感 (QSHS)
  • 批准号:
    ST/T006064/1
  • 财政年份:
    2021
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Research Grant

相似海外基金

Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
  • 批准号:
    ST/T006307/2
  • 财政年份:
    2022
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Research Grant
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
  • 批准号:
    ST/T006307/1
  • 财政年份:
    2021
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Research Grant
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
  • 批准号:
    ST/T006455/1
  • 财政年份:
    2021
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Research Grant
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
  • 批准号:
    ST/T006838/1
  • 财政年份:
    2021
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Research Grant
Establishment of 8-band observation method for CMB and its foreground radiation toward determination of absolute Neutrino mass
确定中微子绝对质量的宇宙微波背景及其前景辐射8波段观测方法的建立
  • 批准号:
    21H04485
  • 财政年份:
    2021
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
  • 批准号:
    ST/T006439/1
  • 财政年份:
    2021
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Research Grant
Probing the absolute neutrino mass scale with a large TES bolometer array for CMB polarization measurement
使用大型 TES 测辐射热计阵列探测绝对中微子质量尺度,进行 CMB 偏振测量
  • 批准号:
    20H01921
  • 财政年份:
    2020
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Probing the Absolute Neutrino Mass scale with a Precise Measurement of Cosmic Microwave Background Polarization
通过精确测量宇宙微波背景偏振来探测绝对中微子质量尺度
  • 批准号:
    15H03670
  • 财政年份:
    2015
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interference and diffraction of the neutrino and the absolute neutrino mass
中微子的干涉和衍射以及绝对中微子质量
  • 批准号:
    24340043
  • 财政年份:
    2012
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Measurement of neutrino absolute mass using superconducting detectors and Rhenium
使用超导探测器和铼测量中微子绝对质量
  • 批准号:
    22684009
  • 财政年份:
    2010
  • 资助金额:
    $ 105.08万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了