Reading Solar System Science 2020
阅读太阳系科学 2020
基本信息
- 批准号:ST/V000497/1
- 负责人:
- 金额:$ 104.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In Reading Solar System Science, we propose five independent projects to gain further insight and understanding in solar and heliospheric physics, magnetospheric plasma processes and planetary atmospheres. Our research will address questions important to how our Sun works, how its variability affects the solar system, the science of space weather, and the existence of life on other planetary bodies.The solar wind is the term given to the outer atmosphere of the Sun, which is constantly expanding through the solar system and blowing across the planets like a wind. We will use physics-based models and data assimilation to make the first reconstruction of the structure of the solar wind over many decades. This reconstruction can then be probed to discover more about the generation of the solar wind.The solar wind carries the magnetic field from deep within our star out into the solar system. This field forms closed loops (with both ends at the Sun) and "open" threads, where only one end originates at the Sun. Different independent measures of how much "open" magnetic field exists in the heliosphere provide different estimates of the amount of open field (known as "open solar flux") that exists; we will use a large number of new and old in-situ spacecraft measurements to attempt to explain the discrepancy.Periodically, the Sun emits large bubbles of plasma into the solar wind, known as coronal mass ejections (CMEs). These bubbles flow through the solar wind, interacting with it and changing shape and speed. We will use imaging data, some of which has been processed by citizen scientists, along with physics-based models to infer the changes in CMEs as they propagate through different solar wind scenarios. We will employ a novel technique to probe how the density of CMEs changes in transit too. Closer to the Earth, the energetic electrons in the radiation belts that surround the Earth are controlled in part by interactions with a wide range of electromagnetic waves. We have a useful theoretical description of the strength of these wave-particle interactions, but it was only designed for waves that do not vary much in time. Real-world observations indicate that the waves and plasma conditions are highly variable and so we look to run physics-based numerical experiments to identify how we should use our knowledge of wave-particle interactions to better model the behaviour of the radiation belt.Finally, we will build analogues of the Martian atmosphere in the laboratory in order to better understand the behaviour of charged dust particles and dust devils in the Martian atmosphere. The arid environment of Mars supports the formation of dust devils that are much larger and stronger than those found on Earth, and we propose to recreate conditions for their formation in the lab, in order to better understand how these atmospheric phenomena affect the distribution of methane. Importantly, methane could provide one of the clues to the existence of life on the planet.
在阅读太阳系科学中,我们提出了五个独立的项目,以进一步了解太阳和日球层物理、磁层等离子体过程和行星大气。我们的研究将解决对我们的太阳如何工作、它的可变性如何影响太阳系、空间天气科学以及其他行星上存在生命的重要问题。太阳风是指太阳的外层大气,它不断地在太阳系中膨胀,像风一样吹过行星。我们将使用基于物理的模型和数据同化来首次重建几十年来太阳风的结构。然后可以探索这种重建,以发现更多关于太阳风的生成。太阳风将磁场从我们恒星的深处带到太阳系。该场形成闭合环路(两端在太阳)和“开放”线,其中只有一端起源于太阳。对日光层中存在多少开放磁场的不同独立测量提供了对存在的开放场量的不同估计;我们将使用大量新旧航天器的现场测量来试图解释这种差异。太阳周期性地向太阳风发射大气泡的等离子体,被称为日冕物质抛射(CME)。这些气泡流经太阳风,与之相互作用,改变形状和速度。我们将使用成像数据,其中一些已经由公民科学家处理,以及基于物理的模型来推断日冕物质抛射在它们通过不同的太阳风场景传播时的变化。我们将使用一种新的技术来探索日冕物质抛射的密度在过境过程中是如何变化的。在离地球更近的地方,环绕地球的辐射带中的高能电子部分受到与大范围电磁波相互作用的控制。我们对这些波-粒子相互作用的强度有一个有用的理论描述,但它只针对时间变化不大的波而设计。真实世界的观测表明,波和等离子体条件是高度可变的,所以我们希望进行基于物理的数值实验,以确定我们应该如何利用我们对波-粒子相互作用的知识来更好地模拟辐射带的行为。最后,我们将在实验室中建立火星大气的类似物,以便更好地了解火星大气中带电尘埃粒子和尘暴的行为。火星的干旱环境支持尘暴的形成,这些尘暴比地球上发现的要大得多,也更强大,我们建议在实验室里为它们的形成创造条件,以便更好地了解这些大气现象如何影响甲烷的分布。重要的是,甲烷可以为地球上生命的存在提供线索之一。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observational Evidence of S-web Source of the Slow Solar Wind
- DOI:10.3847/1538-4357/acc653
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:D. Baker;P. Démoulin;S. Yardley;T. Mihailescu;L. Driel-Gesztelyi;R. D’Amicis;D. Long;A. To;C. Owen;T. Horbury;D. Brooks;D. Perrone;R. French;A. James;M. Janvier;S. Matthews;M. Stangalini;G. Valori;P. Smith;R. A. Cuadrado;H. Peter;U. Schuehle;L. Harra;Krzysztof Barczynski;D. Berghmans;A. Zhukov;L. Rodriguez;C. Verbeeck
- 通讯作者:D. Baker;P. Démoulin;S. Yardley;T. Mihailescu;L. Driel-Gesztelyi;R. D’Amicis;D. Long;A. To;C. Owen;T. Horbury;D. Brooks;D. Perrone;R. French;A. James;M. Janvier;S. Matthews;M. Stangalini;G. Valori;P. Smith;R. A. Cuadrado;H. Peter;U. Schuehle;L. Harra;Krzysztof Barczynski;D. Berghmans;A. Zhukov;L. Rodriguez;C. Verbeeck
SIR-HUXt -- a particle filter data assimilation scheme for assimilating CME time-elongation profiles
SIR-HUXt——用于同化 CME 时间伸长剖面的粒子滤波器数据同化方案
- DOI:10.48550/arxiv.2210.02122
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Barnard L
- 通讯作者:Barnard L
Assessing the potential of heliospheric imager data assimilation to improve CME modelling.
评估日光层成像仪数据同化改进 CME 建模的潜力。
- DOI:10.5194/egusphere-egu22-5613
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Barnard L
- 通讯作者:Barnard L
Improving CME modelling with data assimilation of Heliospheric Imager observations into the HUXt solar wind numerical model.
通过将日光层成像仪观测数据同化到 HUXt 太阳风数值模型中,改进 CME 建模。
- DOI:10.5194/egusphere-egu21-192
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Barnard L
- 通讯作者:Barnard L
HUXt -- An open source, computationally efficient reduced-physics solar wind model, written in Python
HUXt——一种开源、计算高效的简化物理太阳风模型,用 Python 编写
- DOI:10.48550/arxiv.2210.00455
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Barnard L
- 通讯作者:Barnard L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathew Owens其他文献
Predictive Capabilities of Corotating Interaction Regions Using STEREO and Wind In‐Situ Observations
使用 STEREO 和风现场观测的共旋转相互作用区域的预测能力
- DOI:
10.1029/2022sw003112 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yutian Chi;Chenglong Shen;Christopher Scott;Mengjiao Xu;Mathew Owens;Yuming Wang;Mike Lockwood - 通讯作者:
Mike Lockwood
Mathew Owens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathew Owens', 18)}}的其他基金
Why have space weather forecasts not improved for over a decade?
为什么太空天气预报十多年来没有改善?
- 批准号:
NE/Y001052/1 - 财政年份:2024
- 资助金额:
$ 104.09万 - 项目类别:
Research Grant
Solar wind data assimilation - maximising the accuracy of space-weather forecasting
太阳风数据同化 - 最大限度地提高空间天气预报的准确性
- 批准号:
NE/S010033/1 - 财政年份:2019
- 资助金额:
$ 104.09万 - 项目类别:
Research Grant
Space Weather Impact on Ground-based Systems
空间天气对地面系统的影响
- 批准号:
NE/P016928/1 - 财政年份:2017
- 资助金额:
$ 104.09万 - 项目类别:
Research Grant
相似国自然基金
基于“夸父一号”HXI载荷和Solar Orbiter /STIX的耀斑X射线暴多视角观测及研究
- 批准号:12303063
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Planet Formation at Solar System Scales with the James Webb Space Telescope
使用詹姆斯·韦伯太空望远镜观察太阳系行星的形成
- 批准号:
DP230101439 - 财政年份:2023
- 资助金额:
$ 104.09万 - 项目类别:
Discovery Projects
Energy interface engineering for self-sustaining solar thermal distillation system: Enhancement of atmospheric cooling using microstructured surface layers
自持太阳能热蒸馏系统的能量界面工程:利用微结构表面层增强大气冷却
- 批准号:
23K04652 - 财政年份:2023
- 资助金额:
$ 104.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quasi-Parallel Shocks across the Solar System
整个太阳系的准平行激波
- 批准号:
2897122 - 财政年份:2023
- 资助金额:
$ 104.09万 - 项目类别:
Studentship
BIOAVAILABILITY OF ORGANICS FOR LIFE IN THE SOLAR SYSTEM
太阳系生命有机物的生物利用度
- 批准号:
2903266 - 财政年份:2023
- 资助金额:
$ 104.09万 - 项目类别:
Studentship
Fundamental Processes at Giant Planets in the Solar System and Beyond: Global heating and Saturn's Raining Rings
太阳系及其他地区巨行星的基本过程:全球变暖和土星雨环
- 批准号:
ST/X003426/1 - 财政年份:2023
- 资助金额:
$ 104.09万 - 项目类别:
Fellowship
A Novel Environment/Solar-Interactive and Building-Integrate-able Power Generation System Enabling Harness of Solar and Environmental Energy
一种新型环境/太阳能交互和建筑一体化发电系统,能够利用太阳能和环境能源
- 批准号:
EP/X021831/1 - 财政年份:2023
- 资助金额:
$ 104.09万 - 项目类别:
Fellowship
Collaborative Research: Developing optimally customized-mode-selective photonic lanterns to enable the characterization of hundreds of exoplanets on solar system.
合作研究:开发最佳定制模式选择光子灯笼,以表征太阳系上数百颗系外行星。
- 批准号:
2308361 - 财政年份:2023
- 资助金额:
$ 104.09万 - 项目类别:
Standard Grant
Innovative Geodetic Surveys for Determining Surface and Internal Structures of Solar System Small Bodies
用于确定太阳系小天体表面和内部结构的创新大地测量
- 批准号:
23K17710 - 财政年份:2023
- 资助金额:
$ 104.09万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Towards an absolute chronology of the outer Solar System
外太阳系的绝对年表
- 批准号:
22KJ1286 - 财政年份:2023
- 资助金额:
$ 104.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Research on the fractionation process of moderately volatile elements in the early Solar System based on iron sulfide formation experiments
基于硫化铁形成实验的早期太阳系中挥发性元素分馏过程研究
- 批准号:
22KJ0568 - 财政年份:2023
- 资助金额:
$ 104.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows