Space Weather Impact on Ground-based Systems

空间天气对地面系统的影响

基本信息

  • 批准号:
    NE/P016928/1
  • 负责人:
  • 金额:
    $ 39.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Space weather describes the changing properties of near-Earth space, which influences the flow of electrical currents in this region, particularly within the ionosphere and magnetosphere. Space weather results from solar magnetic activity, which waxes and wanes over the Sunspot cycle of 11 years, due to eruptions of electrically charged material from the Sun's outer atmosphere. Particularly severe space weather can affect ground-based, electrically conducting infrastructures such as power transmission systems (National Grid), pipelines and railways. Ground based networks are at risk because rapidly changing electrical currents in space, driven by space weather, cause rapid geomagnetic field changes on the ground. These magnetic changes give rise to electric fields in the Earth that act as a 'battery' across conducting infrastructures. This 'battery' causes geomagnetically induced currents (GIC) to flow to or from the Earth, through conducting networks, instead of in the more resistive ground. These GIC upset the safe operation of transformers, risking damage and blackouts. GIC also cause enhanced corrosion in long metal pipeline networks and interfere with railway signalling systems.Severe space weather in March 1989 damaged power transformers in the UK and caused a long blackout across Quebec, Canada. The most extreme space weather event known - the 'Carrington Event' of 1859 - caused widespread failures and instabilities in telegraph networks, fires in telegraph offices and auroral displays to low latitudes. The likelihood of another such extreme event is estimated to be around 10% per decade. Severe space weather is therefore recognised in the UK government's National Risk Register as a one-in-two to one-in-twenty year event, for which industry and government needs to plan to mitigate the risk. Some studies have estimated the economic consequence of space weather and GIC to run to billions of dollars per day in the major advanced economies, through the prolonged loss of electrical power.There are mathematical models of how GIC are caused by space weather and where in the UK National Grid they may appear (there are no models of GIC flow in UK pipelines or railway networks). However these models are quite limited in what they can do and may therefore not provide a true picture of GIC risk in grounded systems, for example highlighting some locations as being at risk, when in fact any problems lie elsewhere. The electrical model that has been developed to represent GIC at transformer substations in the National Grid misses key features, such as a model of the 132kV transmission system of England and Wales, or any model for Northern Ireland. The conductivity of the subsurface of the UK is known only partly and in some areas not at all well. (We need to know the conductivity in order to compute the electric field that acts as the 'battery' for GIC.) The UK GIC models only 'now-cast', at best, and they have no forecast capability, even though this is a stated need of industry and government. We do not have tried and tested now-cast models, or even forecast models, of magnetic variations on the ground. This is because of our under-developed understanding of how currents flow in the ionosphere and magnetosphere, how these interconnect and how they relate to conditions in the solar wind. In this project we will therefore upgrade existing or create new models that relate GIC in power, pipe and railway networks to ionospheric, magnetospheric and solar wind conditions. These models will address the issues we have identified with the current generation of models and their capabilities and provide accurate data for industry and governments to assess our risk from space weather. In making progress on these issues we will also radically improve on our physical understanding of the way electrical currents and electromagnetic fields interact near and in the Earth and how they affect the important technologies we rely on.
空间天气描述了近地空间不断变化的特性,它影响该区域的电流流动,特别是在电离层和磁层内。太空天气是由太阳磁活动造成的,由于太阳外层大气中带电物质的喷发,太阳磁活动在 11 年的太阳黑子周期中盛衰。特别严重的太空天气可能会影响地面导电基础设施,例如输电系统(国家电网)、管道和铁路。地面网络面临风险,因为太空天气驱动的太空电流快速变化会导致地面地磁场快速变化。这些磁场变化在地球上产生电场,充当导电基础设施的“电池”。这种“电池”导致地磁感应电流(GIC)通过导电网络流入或流出地球,而不是在电阻较大的地面中流动。这些 GIC 扰乱了变压器的安全运行,存在损坏和停电的风险。 GIC 还会导致长金属管道网络的腐蚀加剧,并干扰铁路信号系统。1989 年 3 月的恶劣太空天气损坏了英国的电力变压器,并导致加拿大魁北克省长时间停电。已知最极端的太空天气事件——1859 年的“卡林顿事件”——造成了电报网络大范围故障和不稳定、电报局火灾以及低纬度地区的极光现象。据估计,每十年发生另一次此类极端事件的可能性约为 10%。因此,英国政府的国家风险登记册将恶劣的太空天气视为二分之一到二十年一遇的事件,行业和政府需要为此制定计划以减轻风险。一些研究估计,由于长期断电,太空天气和 GIC 对主要发达经济体造成的经济后果每天高达数十亿美元。有数学模型可以说明太空天气如何引起 GIC 以及它们可能出现在英国国家电网的何处(英国管道或铁路网络中没有 GIC 流动模型)。然而,这些模型的功能非常有限,因此可能无法提供接地系统中 GIC 风险的真实情况,例如突出显示某些位置存在风险,而实际上任何问题都存在于其他地方。为代表国家电网变电站 GIC 而开发的电气模型缺少关键特征,例如英格兰和威尔士 132kV 输电系统的模型或北爱尔兰的任何模型。英国地下的电导率仅部分为人所知,并且在某些地区根本不为人所知。 (我们需要知道电导率才能计算充当 GIC“电池”的电场。)英国 GIC 充其量只能进行“即时预测”模型,并且没有预测能力,尽管这是行业和政府的明确需求。我们还没有尝试和测试地面磁变化的现建模型,甚至预测模型。这是因为我们对电流如何在电离层和磁层中流动、它们如何相互连接以及它们与太阳风条件的关系的了解还不够深入。因此,在这个项目中,我们将升级现有模型或创建新模型,将电力、管道和铁路网络中的 GIC 与电离层、磁层和太阳风条件联系起来。这些模型将解决我们在当前一代模型及其功能中发现的问题,并为行业和政府提供准确的数据,以评估太空天气的风险。在这些问题上取得进展的过程中,我们还将从根本上提高我们对电流和电磁场在地球附近和地球内部相互作用的方式以及它们如何影响我们所依赖的重要技术的物理理解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
What can the annual 10 Be solar activity reconstructions tell us about historic space weather?
年度 10 Be 太阳活动重建可以告诉我们有关历史空间天气的哪些信息?
Quantifying the uncertainty in CME kinematics derived from geometric modelling of Heliospheric Imager data
量化由日光层成像仪数据的几何建模得出的日冕物质抛射运动学的不确定性
  • DOI:
    10.1002/essoar.10507552.1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barnard L
  • 通讯作者:
    Barnard L
Ensemble CME Modeling Constrained by Heliospheric Imager Observations
  • DOI:
    10.1029/2020av000214
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    L. Barnard;M. J. Owens;C. Scott;C. A. D. Koning
  • 通讯作者:
    L. Barnard;M. J. Owens;C. Scott;C. A. D. Koning
Constraining the Location of the Outer Boundary of Earth's Outer Radiation Belt
约束地球外辐射带外边界的位置
  • DOI:
    10.1002/essoar.10505703.1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bloch T
  • 通讯作者:
    Bloch T
Testing the current paradigm for space weather prediction with heliospheric imagers
  • DOI:
    10.1002/2017sw001609
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Barnard;C. Koning;C. Scott;M. Owens;J. Wilkinson;J. Davies
  • 通讯作者:
    L. Barnard;C. Koning;C. Scott;M. Owens;J. Wilkinson;J. Davies
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mathew Owens其他文献

Predictive Capabilities of Corotating Interaction Regions Using STEREO and Wind In‐Situ Observations
使用 STEREO 和风现场观测的共旋转相互作用区域的预测能力
  • DOI:
    10.1029/2022sw003112
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yutian Chi;Chenglong Shen;Christopher Scott;Mengjiao Xu;Mathew Owens;Yuming Wang;Mike Lockwood
  • 通讯作者:
    Mike Lockwood

Mathew Owens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mathew Owens', 18)}}的其他基金

Why have space weather forecasts not improved for over a decade?
为什么太空天气预报十多年来没有改善?
  • 批准号:
    NE/Y001052/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Research Grant
Reading Solar System Science 2020
阅读太阳系科学 2020
  • 批准号:
    ST/V000497/1
  • 财政年份:
    2021
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Research Grant
Solar wind data assimilation - maximising the accuracy of space-weather forecasting
太阳风数据同化 - 最大限度地提高空间天气预报的准确性
  • 批准号:
    NE/S010033/1
  • 财政年份:
    2019
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Research Grant

相似海外基金

Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Studentship
Impact of climatic interannual variabilities and extreme weather on hydrological cycles in the Panama Canal Basin
气候年际变化和极端天气对巴拿马运河流域水文循环的影响
  • 批准号:
    23KK0077
  • 财政年份:
    2023
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Collaborative Research: ANSWERS: Ion-Neutral Coupling in Geospace and its Impact on Space Weather
合作研究:答案:地球空间中的离子中性耦合及其对空间天气的影响
  • 批准号:
    2305408
  • 财政年份:
    2022
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: ANSWERS: Ion-Neutral Coupling in Geospace and its Impact on Space Weather
合作研究:答案:地球空间中的离子中性耦合及其对空间天气的影响
  • 批准号:
    2149781
  • 财政年份:
    2022
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Continuing Grant
Change in Kuroshio under global warming: Assessment of its impact on sea surface temperature and extreme weather events around Japan
全球变暖下黑潮的变化:评估其对日本各地海面温度和极端天气事件的影响
  • 批准号:
    22K03714
  • 财政年份:
    2022
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: ANSWERS: Ion-Neutral Coupling in Geospace and its Impact on Space Weather
合作研究:答案:地球空间中的离子中性耦合及其对空间天气的影响
  • 批准号:
    2149779
  • 财政年份:
    2022
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: ANSWERS: Ion-Neutral Coupling in Geospace and its Impact on Space Weather
合作研究:答案:地球空间中的离子中性耦合及其对空间天气的影响
  • 批准号:
    2149780
  • 财政年份:
    2022
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Continuing Grant
The impact of space weather on UK railways.
太空天气对英国铁路的影响。
  • 批准号:
    2462104
  • 财政年份:
    2020
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Studentship
Adaptive turbulence modelling to improve high-impact weather forecasts in next generation atmospheric models
自适应湍流建模可改善下一代大气模型中的高影响天气预报
  • 批准号:
    NE/T011351/1
  • 财政年份:
    2020
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Fellowship
Spacecraft charging of CubeSats in LEO and the impact of space weather events
近地轨道立方体卫星的航天器充电以及空间天气事件的影响
  • 批准号:
    2373784
  • 财政年份:
    2020
  • 资助金额:
    $ 39.15万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了