Space Plasma and Magnetospheric Physics at Southampton (2021-4)

南安普顿的空间等离子体和磁层物理(2021-4)

基本信息

  • 批准号:
    ST/V000942/1
  • 负责人:
  • 金额:
    $ 54.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

This Consolidated Grant application proposes research which will be undertaken at the University of Southampton in three related projects, all of which are connected to the manner in which the Earth's magnetosphere and bow shock respond to the solar wind.The first project will address questions about how the Earth's magnetosphere responds to the solar wind on a large scale. The nature of this interaction depends on the orientation of the interplanetary magnetic field, which is associated with the solar wind. This orientation is highly changeable, but can be referred to as 'northward' or 'southward'. We will use satellite observations to test mechanisms that have been advocated for previously observed complex structure in the magnetosphere during periods when the interplanetary magnetic field is 'northward', to hunt for the signature of that structure's predicted interaction with the solar wind, and to investigate equivalent structure present in global simulations of the magnetosphere.The second project will investigate how a process called 'turbulence' affects shock wave in plasmas. Turbulence is a process whereby chaotic flow causes energy to be transferred from large scales (e.g. the bulk flow of the solar wind) down to small scales (heating individual particles). A shock wave is formed when an obstacle (such as a magnetosphere) is present in a fast-flowing plasma (such as the solar wind). We will use a combination of observations from three satellite missions: MMS, which makes measurements of the plasma environment near Earth in unprecedented detail, and Parker Solar Probe & Solar Orbiter, both of which make measurements of the solar wind closer to the Sun than ever possible before. By combining spacecraft data with high-performance computational simulations, we will determine how the turbulence process and other solar wind transients affect the structure of plasma shock waves.The final project will investigate the link between plasma turbulence observed in the magnetosphere and turbulent structure that is present in the aurora (northern lights) when the aurora is observed on very fine scales. The plasma turbulence will be observed using measurements from MMS (as in Project 2, but this time looking at a different region of the magnetosphere), and the auroral turbulence will be observed using a unique auroral instrument called ASK, which is operated by the University of Southampton. ASK is capable of observing structure in the aurora down to scales of tens of metres, and changes on timescales down to fractions of a second - capabilities that are unique to ASK.
这项综合赠款申请提出了将在南安普顿大学进行的三个相关项目的研究,所有这些项目都与地球磁层和弓形激波对太阳风的反应方式有关,第一个项目将解决地球磁层如何对太阳风作出大规模反应的问题。这种相互作用的性质取决于行星际磁场的方向,这与太阳风有关。这个方向是高度可变的,但可以被称为“向北”或“向南”。我们将利用卫星观测来测试以前在行星际磁场“向北”期间观察到的磁层复杂结构所倡导的机制,以寻找该结构预测与太阳风相互作用的特征,并研究全球磁层模拟中存在的等效结构。第二个项目将研究一种称为“湍流”的过程影响等离子体中的冲击波。湍流是一个过程,其中混沌流导致能量从大尺度(例如太阳风的整体流动)转移到小尺度(加热单个粒子)。当障碍物(如磁层)出现在快速流动的等离子体(如太阳风)中时,就会形成冲击波。我们将使用来自三个卫星任务的观测组合:MMS,它以前所未有的细节测量地球附近的等离子体环境,以及帕克太阳探测器和太阳轨道飞行器,这两个卫星都比以往任何时候都更接近太阳风的测量。通过将航天器数据与高性能计算模拟相结合,我们将确定湍流过程和其他太阳风瞬变如何影响等离子体冲击波的结构,最后一个项目将研究在极细尺度上观测极光时,在磁层中观测到的等离子体湍流与极光(北方光)中存在的湍流结构之间的联系。等离子体湍流将使用MMS的测量结果进行观测(与项目2一样,但这次观测的是磁层的不同区域),极光湍流将使用一种独特的极光仪器ASK进行观测,该仪器由南安普顿大学操作。ASK能够观测极光中几十米尺度的结构,并在时间尺度上变化到几分之一秒-这是ASK独有的能力。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D GUMICS Simulations of Northward IMF Magnetotail Structure
  • DOI:
    10.1029/2023ja031317
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. J. Fryer;R. Fear;I. Gingell;J. Coxon;M. Palmroth;S. Hoilijoki;P. Janhunen;A. Kullen;P. Cassak
  • 通讯作者:
    L. J. Fryer;R. Fear;I. Gingell;J. Coxon;M. Palmroth;S. Hoilijoki;P. Janhunen;A. Kullen;P. Cassak
Exploring solar-terrestrial interactions via multiple imaging observers
  • DOI:
    10.1007/s10686-021-09784-y
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3
  • 作者:
    G. Branduardi‐Raymont;Matthieu Berthomier;Y. Bogdanova;J. Carter;M. R. Collier;A. Dimmock;Malcolm Dunlop;R. Fear;C. Forsyth;B. Hubert;E. Kronberg;K. Laundal;Mark Lester;S. Milan;K. Oksavik;N. Østgaard;M. Palmroth;F. Plaschke;F. Porter;I. J. Rae;A. Read;A. Samsonov;S. Sembay;Y. Shprits;D. Sibeck;Brian M. Walsh;M. Yamauchi
  • 通讯作者:
    G. Branduardi‐Raymont;Matthieu Berthomier;Y. Bogdanova;J. Carter;M. R. Collier;A. Dimmock;Malcolm Dunlop;R. Fear;C. Forsyth;B. Hubert;E. Kronberg;K. Laundal;Mark Lester;S. Milan;K. Oksavik;N. Østgaard;M. Palmroth;F. Plaschke;F. Porter;I. J. Rae;A. Read;A. Samsonov;S. Sembay;Y. Shprits;D. Sibeck;Brian M. Walsh;M. Yamauchi
Fine-Scale Electric Fields and Joule Heating From Observations of the Aurora
极光观测中的精细电场和焦耳热
  • DOI:
    10.1029/2022ja030628
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Krcelic P
  • 通讯作者:
    Krcelic P
Observations of Closed Magnetic Flux Embedded in the Lobes During Periods of Northward IMF
Distributions of Birkeland Current Density Observed by AMPERE are Heavy-Tailed or Long-Tailed
AMPERE 观测到的伯克兰电流密度分布为重尾或长尾
  • DOI:
    10.1029/2021ja029801
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Coxon J
  • 通讯作者:
    Coxon J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Fear其他文献

Robert Fear的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Fear', 18)}}的其他基金

Fine-scale auroral structure: Causes and effects
精细尺度的极光结构:原因和影响
  • 批准号:
    NE/V012541/1
  • 财政年份:
    2022
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Research Grant
Magnetospheric Physics at Southampton
南安普顿磁层物理
  • 批准号:
    ST/R000719/1
  • 财政年份:
    2018
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Research Grant
Space Weather Impacts on Ground Structures (SWIGS)
空间天气对地面结构的影响 (SWIGS)
  • 批准号:
    NE/P016782/1
  • 财政年份:
    2017
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Research Grant
Magnetic Reconnection in High Definition
高清磁重联
  • 批准号:
    ST/L002809/1
  • 财政年份:
    2014
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Research Grant
Balancing the magnetosphere's magnetic flux budget
平衡磁层的磁通量预算
  • 批准号:
    ST/K004298/2
  • 财政年份:
    2014
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Fellowship
Balancing the magnetosphere's magnetic flux budget
平衡磁层的磁通量预算
  • 批准号:
    ST/K004298/1
  • 财政年份:
    2013
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Fellowship

相似国自然基金

旁轴式plasma-pulsed MIG复合焊电弧、熔滴、贯穿小孔和熔池的耦合机理
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Effects of Temporal Variability on Wave-Particle Interactions in Magnetospheric Plasma
磁层等离子体中波粒相互作用的时间变化的影响
  • 批准号:
    ST/W000369/1
  • 财政年份:
    2021
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Research Grant
Analysis and Prediction of Magnetospheric Plasma Energy Dynamics with the Wind Driven Magnetospheric-Ionospheric (WINDMI) Model
利用风驱动磁层-电离层 (WINDMI) 模型分析和预测磁层等离子体能量动力学
  • 批准号:
    2134451
  • 财政年份:
    2021
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Standard Grant
Holistic study on the genesis and structure of magnetospheric plasma: understanding of auroral phenomena
磁层等离子体的起源和结构的整体研究:对极光现象的理解
  • 批准号:
    17H01177
  • 财政年份:
    2017
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Solar and Magnetospheric Plasma Theory
太阳和磁层等离子体理论
  • 批准号:
    ST/K000950/1
  • 财政年份:
    2013
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Research Grant
Collaborative Research: GEM: The Ionospheric Source of Magnetospheric Plasma-- Measuring, Modeling and Merging into the GEM Geospace General Circulation Model (GGCM)
合作研究:GEM:磁层等离子体的电离层源——测量、建模和合并到 GEM 地球空间环流模型 (GGCM)
  • 批准号:
    1203725
  • 财政年份:
    2012
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEM: The Ionospheric Source of Magnetospheric Plasma-- Measuring, Modeling and Merging into the GEM Geospace General Circulation Model (GGCM)
合作研究:GEM:磁层等离子体的电离层源——测量、建模和合并到 GEM 地球空间环流模型 (GGCM)
  • 批准号:
    1202984
  • 财政年份:
    2012
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Continuing Grant
GEM: Validating Self-Consistent Inner Magnetospheric Models: Assessing Effects of Uncertainties in Plasma Sheet and Electric Field Boundary Conditions on Simulating Storms
GEM:验证自洽内磁层模型:评估等离子体片和电场边界条件的不确定性对模拟风暴的影响
  • 批准号:
    1203195
  • 财政年份:
    2012
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Continuing Grant
Self-organization of magnetospheric plasma confinement: nonlinear effect of distorted metric in foliated phase space
磁层等离子体约束的自组织:叶状相空间中扭曲度量的非线性效应
  • 批准号:
    23224014
  • 财政年份:
    2011
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Collaborative Research: GEM--Asymmetric Entry and Transport of Magnetospheric Plasma During Periods of Northward Interplanetary Magnetic Field
合作研究:GEM--北行行星际磁场期间磁层等离子体的不对称进入和输运
  • 批准号:
    1003876
  • 财政年份:
    2010
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Continuing Grant
Solar and Magnetospheric Plasma Theory
太阳和磁层等离子体理论
  • 批准号:
    ST/H001964/1
  • 财政年份:
    2010
  • 资助金额:
    $ 54.25万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了