Analysis and Prediction of Magnetospheric Plasma Energy Dynamics with the Wind Driven Magnetospheric-Ionospheric (WINDMI) Model

利用风驱动磁层-电离层 (WINDMI) 模型分析和预测磁层等离子体能量动力学

基本信息

  • 批准号:
    2134451
  • 负责人:
  • 金额:
    $ 24.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This award will provide support for the development of a model of the energy dynamics of plasma populations in the magnetosphere under various solar wind driving conditions, focusing in particular on geomagnetic storms and substorms. The research will achieve a significant insight into how the magnetosphere-ionosphere system responds to solar wind driving conditions. The new model would provide valuable information on how the total energy content and energy transfers among the largest reservoirs within the magnetosphere are to be understood. This information would be used to establish the possible state of the magnetosphere prior to and during geomagnetic events. The new model would be capable of fast and robust predictions that can be compared with results from more comprehensive magnetohydrodynamic (MHD) or kinetic models. The project would produce a software implementation of the model as a product to the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA) and the Space Physics Community Coordinated Modeling Center (CCMC) operated by NASA. Space Weather and its effects are assuming major importance in modern times. The training of students in Electrical Engineering and Systems Engineering in space weather will increase awareness among technologists and help them to become more aware of space weather effects. The scientific methods and model development to be achieved in this project will be incorporated into otherwise highly theoretical courses for engineers. The new model would be computationally inexpensive to run. It can be easily ported to a mobile platform and used by space weather enthusiasts to explore space physics. Undergraduate students, K¬12 students and the public, will be able to run this model and start to appreciate space science while getting a powerful glimpse into the tools and methods of the geospace community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将为开发各种太阳风驱动条件下磁层等离子体种群能量动力学模型提供支助,特别侧重于地磁风暴和亚暴。这项研究将实现对磁层-电离层系统如何响应太阳风驱动条件的重大洞察。新的模型将提供关于如何理解磁层内最大的蓄电池之间的总能量含量和能量转移的有价值的信息。这一信息将用于确定地磁事件之前和期间磁层的可能状态。新模型将能够快速和稳健地预测,可以与更全面的磁流体动力学(MHD)或动力学模型的结果进行比较。该项目将为美国国家海洋和大气管理局(大气局)空间天气预报中心和由美国航天局运营的空间物理界协调建模中心制作一个模型的软件实施。空间天气及其影响在现代扮演着重要的角色。对电气工程和系统工程学生进行空间天气方面的培训将提高技术人员的认识,并帮助他们更多地认识到空间天气的影响。在这个项目中实现的科学方法和模型开发将被纳入工程师的其他高度理论性的课程。新模型的运行在计算上将是廉价的。它可以很容易地移植到移动平台上,并被空间气象爱好者用来探索空间物理。本科生、K-12学生和公众将能够运行这个模型,并开始欣赏空间科学,同时有力地一瞥地球航天界的工具和方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edmund Spencer其他文献

A Circuit Model for the Interaction of an RF Impedance Probe with Ionospheric Plasmas in the E-Layer and F-Layer Ionosphere Regions
射频阻抗探头与 E 层和 F 层电离层区域电离层等离子体相互作用的电路模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Piyas Chowdhury;Edmund Spencer;Phanindra Sampath Rayapati;Swadesh Patra;S. K. Vadepu
  • 通讯作者:
    S. K. Vadepu
Using only two magnetorquers to de-tumble a 2U CubeSAT
  • DOI:
    10.1016/j.asr.2018.08.041
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Monkell;Carlos Montalvo;Edmund Spencer
  • 通讯作者:
    Edmund Spencer

Edmund Spencer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edmund Spencer', 18)}}的其他基金

CAREER: Theory, Techniques and Simulations of RF Impedance Probes for Plasma Characterization
职业:用于等离子体表征的射频阻抗探头的理论、技术和模拟
  • 批准号:
    1151450
  • 财政年份:
    2013
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant
NSWP: Space Weather Prediction Using Hybrid Physics/Black-Box Methods
NSWP:使用混合物理/黑盒方法进行空间天气预报
  • 批准号:
    0720201
  • 财政年份:
    2007
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
  • 批准号:
    24K03872
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
  • 批准号:
    24K07131
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
  • 批准号:
    24K07230
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
  • 批准号:
    10102692
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    EU-Funded
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
  • 批准号:
    10103541
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    EU-Funded
Multi-variable based vegetation monitoring and prediction during droughts
干旱期间基于多变量的植被监测与预测
  • 批准号:
    FT230100209
  • 财政年份:
    2024
  • 资助金额:
    $ 24.76万
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了