Quantum Software for a Digital Universe
数字宇宙的量子软件
基本信息
- 批准号:ST/W006537/1
- 负责人:
- 金额:$ 51.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Major progress in science is marked by the bringing into its scope aspects of the world that had previously been considered to be fixed and absolute, but are revealed instead to be dynamical and contingent. Darwin's discovery of the origin of the species by the process of evolution by natural selection is a prime example, as is Einstein's discovery that spacetime itself has its own laws of motion that couple its behaviour to the matter within it. Such discoveries always open the door to further questions -- unthinkable before the shift in world-view -- and in the case of spacetime, we are confronted today with questions of a profound and cosmological nature involving the interaction and ultimate relationship between spacetime and quantum matter. This project will develop new quantum software, namely quantum algorithms, to address fundamental physical questions about quantum field theory (QFT) in the early universe, particle astrophysics and black holes on the assumption that spacetime is, at some level, digital or discrete and also respects Lorentz invariance. The fundamental physics aims of this project are: i) discover the effect of discreteness on perturbations of an interacting quantum scalar field theory such as the inflaton in the early universe and, alternatively, model initial density perturbations arising from pre-Big Bang dynamics of an evolving discrete cosmos; ii) account for the entropy of a black hole by a state counting method where the states are discrete states of the horizon; iii) discover phenomenology of quantum particles of astrophysical or cosmological origin in a digital spacetime background. Heeding the stringent bounds on violation of Lorentz invariance, we will use a discrete dataset that can underpin a continuum spacetime approximation and also be Lorentz invariant. A random, discrete partial order or causal set is such a dataset. Such a mathematical object is difficult to deal with analytically and numerical calculations are crucial for progress, especially for obtaining testable predictions from phenomenological models. The numerical methods, however, also have their limitations since classical algorithms require extensive computational power and time, especially in the phenomenologically relevant case of 4-dimensional spacetime.Our approach is to develop numerical methods for those physical questions, that use quantum algorithms, at least for expensive subroutines, and we will prioritise quantum algorithms that can be implemented on Noisy Intermediate Scale Quantum devices. The techniques we will use include: the variational quantum eigensolver, the quantum approximate optimisation algorithm, quantum annealing and adiabatic quantum computing, as well as quantum walks. The ambition is that these quantum algorithms will offer advantage in comparison with classical numerical methods for these novel investigations of the physics of a digital universe, and be an important tool for investigating and testing further discrete models for fundamental physics in the near-future. These quantum algorithms will first be tested in an emulation environment using High Performance Computing and specifically the Archer2 national leading facility. The effects of noise on the performance will be considered and we will extrapolate to understand the scales on which these algorithms will outperform classical numerical methods. Eventually, we aim to run these quantum algorithms on physical devices -- digital quantum computers -- once our confidence in the potential advantage is founded and access to suitable hardware is obtained. We will seek to obtain such access reaching out to hardware developed within the UK National Quantum Technology Programme: via our committed engagement with the Quantum Computing and Simulation Hub, or by approaching the National Quantum Computing Centre and quantum hardware companies involved in the UK National Quantum Technology Programme, such as Rigetti and IBM.
科学的主要进步是把以前被认为是固定的和绝对的世界的各个方面纳入其范围,但这些方面被揭示为动态的和偶然的。达尔文发现物种起源于自然选择的进化过程,这是一个最好的例子,爱因斯坦发现时空本身有自己的运动规律,将其行为与其中的物质联系起来。这些发现总是为进一步的问题打开大门--在世界观转变之前是不可想象的--就时空而言,我们今天面对的是一个深刻的宇宙学性质的问题,涉及时空和量子物质之间的相互作用和最终关系。该项目将开发新的量子软件,即量子算法,以解决有关早期宇宙量子场论、粒子天体物理学和黑洞的基本物理问题,假设是时空在某种程度上是数字的或离散的,并尊重洛伦兹不变性。该项目的基本物理目标是:一)发现离散性对相互作用量子标量场理论(如早期宇宙中的暴胀子)的扰动的影响,或者,模拟由演化中的离散宇宙的大爆炸前动力学引起的初始密度扰动;二)通过状态计数方法计算黑洞的熵,其中状态是视界的离散状态; iii)在数字时空背景中发现天体物理学或宇宙学起源量子粒子的现象学。注意违反洛伦兹不变性的严格界限,我们将使用一个离散数据集,它可以支持连续时空近似,也是洛伦兹不变性。随机的、离散的偏序或因果集就是这样的数据集。这样一个数学对象是很难处理的分析和数值计算是至关重要的进展,特别是获得可检验的预测从唯象模型。然而,数值方法也有其局限性,因为经典的算法需要大量的计算能力和时间,特别是在现象学相关的情况下4维space-time. We的方法是开发这些物理问题的数值方法,使用量子算法,至少是昂贵的子程序,我们将优先考虑量子算法,可以实现在嘈杂的中间尺度量子设备。我们将使用的技术包括:变分量子本征解,量子近似优化算法,量子退火和绝热量子计算,以及量子行走。我们的目标是,这些量子算法将提供与经典数值方法相比的优势,用于这些数字宇宙物理学的新研究,并成为在不久的将来研究和测试基础物理学进一步离散模型的重要工具。这些量子算法将首先在使用高性能计算的仿真环境中进行测试,特别是Archer 2国家领先的设施。噪声对性能的影响将被考虑,我们将外推,以了解这些算法将优于经典的数值方法的规模。最终,我们的目标是在物理设备上运行这些量子算法-数字量子计算机-一旦我们对潜在优势的信心建立起来,并获得合适的硬件。我们将寻求获得这样的访问权限,以接触在英国国家量子技术计划内开发的硬件:通过我们与量子计算和模拟中心的承诺,或通过接触国家量子计算中心和参与英国国家量子技术计划的量子硬件公司,如Rigetti和IBM。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hopf algebras from poset growth models
来自偏序集增长模型的 Hopf 代数
- DOI:10.48550/arxiv.2310.17547
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yeats K
- 通讯作者:Yeats K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petros Wallden其他文献
Petros Wallden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
I-Corps: Digital therapeutics software solutions for autistic children
I-Corps:针对自闭症儿童的数字治疗软件解决方案
- 批准号:
2335647 - 财政年份:2023
- 资助金额:
$ 51.55万 - 项目类别:
Standard Grant
TASK ORDER TITLED "NHLBI USER-CENTERED RESEARCH, ANALYTICS AND DIGITAL COMMUNICATION SOFTWARE TOOLS MANAGEMENT"
任务订单标题为“NHLBI 以用户为中心的研究、分析和数字通信软件工具管理”
- 批准号:
10974172 - 财政年份:2023
- 资助金额:
$ 51.55万 - 项目类别:
Support for Spirit Digital launching their remote patient management software into the US healthcare market
支持 Spirit Digital 将其远程患者管理软件推向美国医疗保健市场
- 批准号:
10019823 - 财政年份:2022
- 资助金额:
$ 51.55万 - 项目类别:
Collaborative R&D
EyeStar-BIO: Software for Enhancing Digital Binocular Indirect Ophthalmoscopy Examinations
EyeStar-BIO:用于增强数字双目间接检眼镜检查的软件
- 批准号:
10824075 - 财政年份:2022
- 资助金额:
$ 51.55万 - 项目类别:
EyeStar-BIO: Software for Enhancing Digital Binocular Indirect Ophthalmoscopy Examinations
EyeStar-BIO:用于增强数字双目间接检眼镜检查的软件
- 批准号:
10383202 - 财政年份:2022
- 资助金额:
$ 51.55万 - 项目类别:
WalletFind: An Automatic Digital Forensic Investigation of Hardware and Software Cryptocurrency Wallets
WalletFind:硬件和软件加密货币钱包的自动数字取证调查
- 批准号:
10002203 - 财政年份:2021
- 资助金额:
$ 51.55万 - 项目类别:
Collaborative R&D
IRIS Digital Assets - FAST-HEP: Faster Analysis Software Tools for HEP
IRIS Digital Assets - FAST-HEP:更快的 HEP 分析软件工具
- 批准号:
ST/W00495X/1 - 财政年份:2021
- 资助金额:
$ 51.55万 - 项目类别:
Research Grant
Evaluation of digital chest x-ray analysis with commercial artificial intelligence-based software for tuberculosis diagnosis in Ca Mau, Vietnam
使用基于商业人工智能的软件对越南金瓯的结核病诊断进行数字胸部 X 射线分析的评估
- 批准号:
454855 - 财政年份:2021
- 资助金额:
$ 51.55万 - 项目类别:
Fellowship Programs
A feasibility study of a data security software product adopting Digital Security by Design (DSbD) technology
采用数字安全设计(DSbD)技术的数据安全软件产品的可行性研究
- 批准号:
103220 - 财政年份:2021
- 资助金额:
$ 51.55万 - 项目类别:
Collaborative R&D
Research on software productivity and management transformation of Japanese electronics manufacturers in the era of Digital transformation
数字化转型时代日本电子制造商软件生产力与管理转型研究
- 批准号:
21K01632 - 财政年份:2021
- 资助金额:
$ 51.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)