Particles, Fields and Strings at Liverpool

利物浦的粒子、场和弦

基本信息

  • 批准号:
    ST/X000699/1
  • 负责人:
  • 金额:
    $ 103.09万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

With the discovery of the Higgs boson at the Large Hadron Collider, the Standard Model (SM) of Particle Physics is established at the electroweak scale and successfully describes a plethora of experimental data. Similarly, the Standard Cosmological Model is grounded in observational data. Yet, deep and profound mysteries remain in our understanding of the Universe. The existence of Dark Matter (DM) necessitates new physics Beyond the SM (BSM), and crucial issues concerning dark energy and the unification of gravity with the other forces remain unaddressed. Meanwhile, the mathematical structures that underlie Quantum Field Theory (QFT) are far from fully explored; and there are important open questions about the dynamics of matter within the SM, especially in extreme conditions. With the research proposed in three complementary Science Areas, the Liverpool Consortium bid is addressing these fundamental problems.`String Phenomenology and Cosmology'In view of the experimental data, resolution of the many shortcomings of the contemporary paradigms can only be obtained by the consistent fusion of gravity and the gauge interactions. String theory provides the leading mathematical framework to explore the unification of the gauge and gravitational interactions, and string phenomenology is the area of string theory that links string theory and observational data. The research proposed in `String Phenomenology and Cosmology' aims at bridging the gap between theoretical advances at the forefront and observational reality. The proposed research will explore the basic symmetries that underlie string theory, aiming to unravel the cosmological evolution near the quantum gravity scale, as well as extract the predictions of string vacua for contemporary experimental searches, including collider, gravitational wave experiments and quantum sensor searches for ultra-light particles.`Precision QFT for Particle Physics'will use their expertise in higher-order perturbative Feynman diagram calculations and precision phenomenology to (i) improve our understanding of QFT by constructing the a-function for scale-invariant quantum gravity, (ii) perform cutting edge 4-loop and 5-loop computations, (iii) match perturbative and lattice renormalisation schemes, (iv) improve the SM predictions for (g-2) and quark flavour physics to unprecedented precision, (v) use effective field theory descriptions to search for BSM physics, and (vi) explore BSM scenarios which address the shortcomings and anomalies of the SM and possibly provide a DM candidate. The proposed research will provide crucial theoretical results and tools for these endeavours. It will contribute to the exploitation and planning of current and future experiments at the energy and precision frontier, including DM searches.`Lattice Quantum Field Theory'will continue to exploit state-of-the-art high performance computers to attack questions about strongly-interacting particles, examples being: ever-more precise calculations of the internal structure and decays of bound states of quarks known as hadrons; the properties of the plasma-like medium formed under the extreme temperatures and densities found at the very beginning of the Universe and now recreated in energetic collisions between atomic nuclei at CERN; new theories that explain the Higgs boson as a composite of still-more elementary particles; models incorporating a supersymmetry relating fermions to bosons which inform our understanding of quantum gravity; models in two dimensions underlying the electronic properties of exotic new materials; and the development of new quantum algorithms to tackle hitherto inaccessible questions relating to dense, evolving matter.
随着大型强子对撞机希格斯玻色子的发现,弱电尺度的粒子物理标准模型(SM)得以建立,并成功描述了大量的实验数据。同样,标准宇宙学模型也以观测数据为基础。然而,我们对宇宙的理解仍然存在深刻而深刻的奥秘。暗物质(DM)的存在需要超越暗物质(BSM)的新物理学,而有关暗能量以及重力与其他力的统一的关键问题仍未得到解决。与此同时,量子场论 (QFT) 背后的数学结构还远未得到充分探索。关于 SM 内物质的动力学,特别是在极端条件下,还存在一些重要的悬而未决的问题。通过在三个互补的科学领域提出的研究,利物浦联盟正在解决这些基本问题。“弦现象学和宇宙学”从实验数据来看,当代范式的许多缺点只能通过重力和规范相互作用的一致融合来解决。弦理论为探索规范和引力相互作用的统一提供了领先的数学框架,弦现象学是将弦理论和观测数据联系起来的弦理论领域。 《弦现象学和宇宙学》中提出的研究旨在弥合前沿理论进展与观测现实之间的差距。拟议的研究将探索弦理论的基本对称性,旨在揭示量子引力尺度附近的宇宙演化,并提取弦真空的预测,用于当代实验搜索,包括对撞机、引力波实验和超轻粒子的量子传感器搜索。“粒子物理学的精密QFT”将利用他们在高阶微扰费曼图方面的专业知识 计算和精密现象学,以(i)通过构建尺度不变量子引力的a函数来提高我们对QFT的理解,(ii)执行尖端的4环和5环计算,(iii)匹配微扰和晶格重正化方案,(iv)将(g-2)和夸克味物理的SM预测提高到前所未有的精度,(v)使用有效场论描述 搜索 BSM 物理,以及 (vi) 探索解决 SM 缺点和异常的 BSM 场景,并可能提供 DM 候选者。拟议的研究将为这些努力提供重要的理论结果和工具。它将有助于能源和精确前沿领域当前和未来实验的开发和规划,包括DM搜索。“晶格量子场论”将继续利用最先进的高性能计算机来解决有关强相互作用粒子的问题,例如:对强子夸克的内部结构和束缚态衰变进行更加精确的计算;类等离子体介质的特性是在宇宙诞生之初的极端温度和密度下形成的,现在在欧洲核子研究中心的原子核之间的高能碰撞中重现;新理论将希格斯玻色子解释为更多基本粒子的复合体;包含将费米子与玻色子联系起来的超对称性的模型,有助于我们理解量子引力;二维模型是奇异新材料电子特性的基础;以及开发新的量子算法来解决迄今为止无法解决的与致密、不断演化的物质有关的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Teubner其他文献

An alternative evaluation of the leading-order hadronic contribution to the muon <em>g</em> − 2 with MUonE
  • DOI:
    10.1016/j.physletb.2023.138344
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fedor Ignatov;Riccardo Nunzio Pilato;Thomas Teubner;Graziano Venanzoni
  • 通讯作者:
    Graziano Venanzoni
拘束条件付き Allen-Cahn 方程式に由来する自由境界値問題について
关于带约束的Allen-Cahn方程导出的自由边值问题
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Diogo Boito;Maarten Golterman;Alexander Keshavarzi;Kim Maltman;Daisuke Nomura;Santiago Peris;Thomas Teubner;赤木剛朗
  • 通讯作者:
    赤木剛朗
Influence of strain on solid–liquid phase equilibrium in heteroepitaxy of SiGe/Si(0 0 1)
  • DOI:
    10.1016/j.jcrysgro.2005.11.087
  • 发表时间:
    2006-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Teubner;Torsten Boeck
  • 通讯作者:
    Torsten Boeck
Solution growth of crystalline silicon on glass in the In–Si–Mo system
  • DOI:
    10.1016/j.jcrysgro.2010.01.043
  • 发表时间:
    2010-04-15
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Heimburger;Thomas Teubner;Nils Deßmann;Hans-Peter Schramm;Torsten Boeck;Roberto Fornari
  • 通讯作者:
    Roberto Fornari
The strange and charm quark contributions to the anomalous magnetic moment of the muon from lattice QCD
  • DOI:
    10.1016/j.nuclphysbps.2015.09.266
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jonna Koponen;Bipasha Chakraborty;Christine T.H. Davies;Gordon Donald;Rachel Dowdall;Pedro Gonçalves de Oliveira;G. Peter Lepage;Thomas Teubner
  • 通讯作者:
    Thomas Teubner

Thomas Teubner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Teubner', 18)}}的其他基金

New Horizons in Quantum Field Theory, Particle Physics and String Phenomenology
量子场论、粒子物理学和弦现象学的新视野
  • 批准号:
    ST/T000988/1
  • 财政年份:
    2020
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Research Grant

相似国自然基金

手性Salen配合物催化与底物诱导的不对称多组分Kabachnik-Fields反应
  • 批准号:
    21162008
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Particles, Fields and Strings
粒子、场和弦
  • 批准号:
    SAPIN-2017-00029
  • 财政年份:
    2022
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Particles, Fields and Strings
粒子、场和弦
  • 批准号:
    SAPIN-2017-00029
  • 财政年份:
    2021
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Interactions of Particles, Fields, and Strings
粒子、场和弦的相互作用
  • 批准号:
    2013858
  • 财政年份:
    2020
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Standard Grant
Particles, Fields and Strings
粒子、场和弦
  • 批准号:
    SAPIN-2017-00029
  • 财政年份:
    2020
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Particles, Fields and Strings
粒子、场和弦
  • 批准号:
    SAPIN-2017-00029
  • 财政年份:
    2019
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Particles, Fields and Strings
粒子、场和弦
  • 批准号:
    SAPIN-2017-00029
  • 财政年份:
    2018
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Interactions of Particles, Fields, and Strings
粒子、场和弦的相互作用
  • 批准号:
    1719924
  • 财政年份:
    2017
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Continuing Grant
Particles, Fields and Strings
粒子、场和弦
  • 批准号:
    SAPIN-2017-00029
  • 财政年份:
    2017
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Subatomic Physics Envelope - Individual
"Particles, Strings and Fields"
《粒子、弦和场》
  • 批准号:
    38358-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Subatomic Physics Envelope - Individual
"Particles, Strings and Fields"
《粒子、弦和场》
  • 批准号:
    38358-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 103.09万
  • 项目类别:
    Subatomic Physics Envelope - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了