New Horizons in Quantum Field Theory, Particle Physics and String Phenomenology

量子场论、粒子物理学和弦现象学的新视野

基本信息

  • 批准号:
    ST/T000988/1
  • 负责人:
  • 金额:
    $ 90.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Theoretical investigations of the Standard Model have underpinned experimental discoveries and have been instrumental in shaping our current knowledge of the nature of matter and its interactions. At a time when the standard model (SM) has finally been completed by the discovery of the Higgs boson, deep and profound mysteries remain in our understanding of the Universe. The existence of dark matter necessitates new physics beyond the SM, and crucial issues concerning dark energy and the unification of gravity with the other forces remain unaddressed. Meanwhile, the mathematical structures that underlie quantum field theory are far from fully explored; and there are important open questions about the dynamics of matter within the SM, especially in extreme environments.The Theoretical Physics group in Liverpool is contributing to searches for New Physics from three complementary directions. (i) We carry out perturbative calculations within the standard model to an unprecedented precision. This is essential if deviations of observables from their SM predictions, occurring due to new physics, are to be detected in accelerator experiments. Concurrently, we are using our theoretical expertise to explore promising extensions of the Standard Model and to inform the development of experiments that are well placed to discover new physics. (ii) These efforts are complemented by large scale computer based calculations. This non-perturbative approach is essential for unlocking certain inputs for standard model theory predictions, which are beyond the reach of perturbation theory. The current lack of precision in these inputs limits the usefulness of experimental observations. Our simulations are state-of-the-art and are now including electro-magnetic corrections (QED) to the theory of strong interactions QCD. (iii) We determine the fingerprints that Beyond the Standard Model (BSM) physics could produce in experimental data and observations. Such work includes the use of astrophysical and cosmological data, e.g. from dark energy surveys and gravitational waves, and it leads to constraints that complement laboratory based searches. This is accompanied by rigorous studies in string theory. In addition to progressing towards an understanding of quantum gravity, our work in this direction informs and inspires BSM model building.We also explore terra incognita within the Standard Model itself: we will study the phases of strongly interacting matter in particular at finite densities, and we will embark on the study of real-time dynamics in quantum field theory using first principle computer simulations. A key challenge is to understand how quarks and gluons form hadrons, the basic building blocks of matter. The standard explanation for forming hadrons out of a heavy ion collision fireball invokes a local thermal equilibrium, which might or might not be justified. A distinctive alternative to explain observations is a genuine quantum effect called entanglement, which we will endeavour to explore.
对标准模型的理论研究支持了实验发现,并有助于塑造我们目前对物质性质及其相互作用的认识。当标准模型(SM)最终因希格斯玻色子的发现而完成时,我们对宇宙的理解仍然存在深刻而深刻的奥秘。暗物质的存在需要超越SM的新物理学,关于暗能量和引力与其他力的统一的关键问题仍然没有解决。与此同时,量子场论的数学结构还远未得到充分的探索;关于SM中物质的动力学,特别是在极端环境中的动力学,还有一些重要的悬而未决的问题。利物浦的理论物理小组正在从三个互补的方向为寻找新物理学做出贡献。(i)我们在标准模型中进行了微扰计算,达到了前所未有的精度。这是必不可少的,如果观测偏差从他们的SM预测,发生由于新的物理,要在加速器实验中检测到。同时,我们正在利用我们的理论专业知识来探索标准模型的有前途的扩展,并为发现新物理的实验的发展提供信息。(ii)这些努力得到了大规模计算机计算的补充。这种非微扰的方法是必不可少的解锁某些输入标准模型理论的预测,这是超出了微扰理论的范围。目前这些输入数据缺乏精确性,限制了实验观察的有用性。我们的模拟是最先进的,现在包括电磁修正(QED)的强相互作用QCD理论。(iii)我们确定了超越标准模型(BSM)物理学在实验数据和观测中可能产生的指纹。这些工作包括使用天体物理学和宇宙学数据,例如来自暗能量调查和引力波的数据,并导致补充实验室搜索的限制。这伴随着弦理论的严格研究。除了对量子引力的理解,我们在这一方向的工作也为BSM模型的建立提供了信息和启发。我们还将探索标准模型本身的未知领域:我们将研究强相互作用物质的相,特别是在有限密度下,我们将开始使用第一性原理计算机模拟研究量子场论中的实时动力学。一个关键的挑战是理解夸克和胶子是如何形成强子的,强子是物质的基本组成部分。重离子碰撞火球形成强子的标准解释是局部热平衡,这可能是合理的,也可能是不合理的。一个独特的替代解释观测是一个真正的量子效应称为纠缠,我们将努力探索。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mini-Proceedings of the STRONG2020 Virtual Workshop on "Space-like and Time-like determination of the Hadronic Leading Order contribution to the Muon $g-2$"
STRONG2020 虚拟研讨会小型会议记录“强子主导秩序对 Muon $g-2$ 贡献的类空间和类时间确定”
  • DOI:
    10.48550/arxiv.2201.12102
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbiendi G
  • 通讯作者:
    Abbiendi G
$Z^\prime$-mediated Majorana dark matter: suppressed direct-detection rate and complementarity of LHC searches
$Z^prime$介导的马约拉纳暗物质:抑制直接探测率和大型强子对撞机搜索的互补性
  • DOI:
    10.48550/arxiv.2202.02292
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alanne T
  • 通讯作者:
    Alanne T
Z'-mediated Majorana dark matter: suppressed direct-detection rate and complementarity of LHC searches
Z介导的马约拉纳暗物质:抑制直接探测率和大型强子对撞机搜索的互补性
Longitudinal Z-boson polarization and the Higgs boson production cross section at the Large Hadron Collider
  • DOI:
    10.1016/j.physletb.2021.136613
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    S. Amoroso;J. Fiaschi;F. Giuli;A. Glazov;F. Hautmann;O. Zenaiev
  • 通讯作者:
    S. Amoroso;J. Fiaschi;F. Giuli;A. Glazov;F. Hautmann;O. Zenaiev
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Teubner其他文献

An alternative evaluation of the leading-order hadronic contribution to the muon <em>g</em> − 2 with MUonE
  • DOI:
    10.1016/j.physletb.2023.138344
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fedor Ignatov;Riccardo Nunzio Pilato;Thomas Teubner;Graziano Venanzoni
  • 通讯作者:
    Graziano Venanzoni
拘束条件付き Allen-Cahn 方程式に由来する自由境界値問題について
关于带约束的Allen-Cahn方程导出的自由边值问题
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Diogo Boito;Maarten Golterman;Alexander Keshavarzi;Kim Maltman;Daisuke Nomura;Santiago Peris;Thomas Teubner;赤木剛朗
  • 通讯作者:
    赤木剛朗
Influence of strain on solid–liquid phase equilibrium in heteroepitaxy of SiGe/Si(0 0 1)
  • DOI:
    10.1016/j.jcrysgro.2005.11.087
  • 发表时间:
    2006-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Teubner;Torsten Boeck
  • 通讯作者:
    Torsten Boeck
Solution growth of crystalline silicon on glass in the In–Si–Mo system
  • DOI:
    10.1016/j.jcrysgro.2010.01.043
  • 发表时间:
    2010-04-15
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Heimburger;Thomas Teubner;Nils Deßmann;Hans-Peter Schramm;Torsten Boeck;Roberto Fornari
  • 通讯作者:
    Roberto Fornari
The strange and charm quark contributions to the anomalous magnetic moment of the muon from lattice QCD
  • DOI:
    10.1016/j.nuclphysbps.2015.09.266
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jonna Koponen;Bipasha Chakraborty;Christine T.H. Davies;Gordon Donald;Rachel Dowdall;Pedro Gonçalves de Oliveira;G. Peter Lepage;Thomas Teubner
  • 通讯作者:
    Thomas Teubner

Thomas Teubner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Teubner', 18)}}的其他基金

Particles, Fields and Strings at Liverpool
利物浦的粒子、场和弦
  • 批准号:
    ST/X000699/1
  • 财政年份:
    2023
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Research Grant

相似海外基金

Conference: Quantum Horizons: Empowering Faculty for the Future of Quantum Information
会议:量子视野:为量子信息的未来赋予教师权力
  • 批准号:
    2345607
  • 财政年份:
    2024
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Standard Grant
Quantum Gravity, Horizons, and Beyond
量子引力、视界及其他
  • 批准号:
    2309634
  • 财政年份:
    2023
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Continuing Grant
Cavity Spintronics: Expanding the horizons for microwave, THz, magnetic, and quantum technologies
腔自旋电子学:拓展微波、太赫兹、磁和量子技术的视野
  • 批准号:
    RGPIN-2019-05871
  • 财政年份:
    2022
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Discovery Grants Program - Individual
Cavity Spintronics: Expanding the horizons for microwave, THz, magnetic, and quantum technologies
腔自旋电子学:拓展微波、太赫兹、磁和量子技术的视野
  • 批准号:
    RGPIN-2019-05871
  • 财政年份:
    2021
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Discovery Grants Program - Individual
Cavity Spintronics: Expanding the horizons for microwave, THz, magnetic, and quantum technologies
腔自旋电子学:拓展微波、太赫兹、磁和量子技术的视野
  • 批准号:
    RGPAS-2019-00061
  • 财政年份:
    2020
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Quantum Algorithms for Large-Scale Quantum Computers: New Horizons and Applications
大规模量子计算机的量子算法:新视野和应用
  • 批准号:
    20H04139
  • 财政年份:
    2020
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cavity Spintronics: Expanding the horizons for microwave, THz, magnetic, and quantum technologies
腔自旋电子学:拓展微波、太赫兹、磁和量子技术的视野
  • 批准号:
    RGPIN-2019-05871
  • 财政年份:
    2020
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Discovery Grants Program - Individual
Cavity Spintronics: Expanding the horizons for microwave, THz, magnetic, and quantum technologies
腔自旋电子学:拓展微波、太赫兹、磁和量子技术的视野
  • 批准号:
    RGPIN-2019-05871
  • 财政年份:
    2019
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Discovery Grants Program - Individual
Cavity Spintronics: Expanding the horizons for microwave, THz, magnetic, and quantum technologies
腔自旋电子学:拓展微波、太赫兹、磁和量子技术的视野
  • 批准号:
    RGPAS-2019-00061
  • 财政年份:
    2019
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Classical and Quantum Aspects of Black Holes, Horizons and Asymptotic Symmetries
黑洞、视界和渐近对称性的经典和量子方面
  • 批准号:
    1707938
  • 财政年份:
    2017
  • 资助金额:
    $ 90.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了