Manchester Particle Theory Consolidated Grant 2022 : Particle Physics in Colliders and the Cosmos

曼彻斯特粒子理论综合资助 2022:对撞机和宇宙中的粒子物理学

基本信息

  • 批准号:
    ST/X00077X/1
  • 负责人:
  • 金额:
    $ 98.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Particle physics has an ambitious goal : to understand our Universe at the most fundamental level. This means discovering all the elementary particles which are the ultimate building blocks of matter, and understanding the laws that govern their interactions. The current theory is known as the Standard Model of particle physics and it has enjoyed decades of remarkable success in explaining experimental data from all the high-energy particle collider experiments to date, including data from the current LHC at CERN. Yet it is also abundantly clear that there exists physics beyond the Standard Model which has eluded us and awaits discovery. For instance it is known that a large fraction of the material Universe is made up of "dark matter" which cannot be explained within the Standard Model. Our scientists are experts in Standard Model physics as well as in theories of particle physics beyond the Standard Model and their possible manifestation in colliders and cosmological data. We propose to exploit this expertise to maximise the prospects for discovery of new physics.One of the main routes to discovery involves confronting precise LHC data with equally precise theoretical predictions to look for deviations from the current theory, which would signal new physics. The landmark discovery of the Higgs boson, which deals with the origin of mass, offers an exciting avenue for further exploration. Often described as the last piece of the Standard Model jigsaw, the true nature of this particle is yet to become clear, and any deviation from the textbook Higgs boson could signal new physics. Our expertise in the theory of strong interactions (QCD) is critical for such studies at the LHC, which smashes together protons at high energies and where strong interactions are all pervasive. We specialise in the construction of algorithms which derive from QCD and lead to a full computer simulation of LHC collisions that can be directly compared to data. One of the proposed aims of our research is to design novel QCD based algorithms which improve the current state of the art in a variety of ways. We are also experts in the physics of "jets" which are formed in LHC collisions. In our proposal we aim to develop new methods that will enable us to distinguish jets produced by Standard Model particles from those arising from new particles, thereby enhancing the discovery potential of the LHC.If deviations from Standard Model expectations are seen in experimental data, we need to be able to interpret them in terms of theories of physics beyond the Standard Model. Our proposed research involves the continued construction of compelling models of new physics and investigating their signatures at the LHC. Another part of our research consists of actively pursuing some of the key questions that the Standard Model has left unanswered. One such question concerns the excess of matter over antimatter in our Universe and we propose to investigate directly related questions using the latest LHC data. Another direction involves searches for new particles, at colliders and elsewhere, that might be candidates for dark matter. Our scientists, with expertise in theories of dark matter, propose to study LHC data together with astrophysical observations and dedicated dark matter searches in order to discover the origin of dark matter. Yet another area where the Standard Model is inadequate is for explaining the "dark energy" that is responsible for the accelerated expansion of the Universe, for which there is overwhelming evidence. We propose to study dark energy theories and to develop them further, alongside their interplay with dark matter theories. All our proposed work involves combining cutting-edge theoretical ideas and techniques with rigorous methodology and the most precise data from colliders and cosmology. We thus believe that achievement of our goals will equate to scientific progress that shall be of lasting value to our field.
粒子物理学有一个雄心勃勃的目标:在最基本的水平上理解我们的宇宙。这意味着发现所有的基本粒子,它们是物质的最终组成部分,并理解支配它们相互作用的定律。目前的理论被称为粒子物理学的标准模型,它在解释迄今为止所有高能粒子对撞机实验的实验数据方面取得了数十年的显着成功,包括CERN当前LHC的数据。然而,同样非常清楚的是,存在着超越标准模型的物理学,它一直躲避着我们,等待着我们的发现。例如,我们知道宇宙的大部分物质是由“暗物质”组成的,这在标准模型中是无法解释的。我们的科学家是标准模型物理学的专家,也是标准模型之外的粒子物理学理论及其在对撞机和宇宙学数据中的可能表现的专家。我们建议利用这一专业知识来最大限度地提高发现新物理的前景。发现的主要途径之一是将精确的LHC数据与同样精确的理论预测进行比较,以寻找与当前理论的偏差,这将标志着新物理。希格斯玻色子的发现具有里程碑意义,它涉及质量的起源,为进一步探索提供了令人兴奋的途径。通常被描述为标准模型拼图的最后一块,这种粒子的真实性质尚未变得清晰,任何偏离教科书的希格斯玻色子都可能标志着新的物理学。我们在强相互作用理论(QCD)方面的专业知识对于LHC的此类研究至关重要,LHC以高能量将质子撞击在一起,并且强相互作用无处不在。我们专注于从QCD衍生的算法的构建,并导致LHC碰撞的完全计算机模拟,可以直接与数据进行比较。我们的研究的目的之一是设计新的QCD算法,以各种方式改善目前的艺术状态。我们也是LHC碰撞中形成的“喷流”物理学专家。在我们的建议中,我们的目标是开发新的方法,使我们能够区分标准模型粒子产生的喷流和新粒子产生的喷流,从而提高LHC的发现潜力。如果在实验数据中发现了与标准模型预期的偏差,我们需要能够根据标准模型之外的物理理论来解释它们。我们提议的研究包括继续构建引人注目的新物理模型,并在LHC上研究它们的签名。我们研究的另一部分包括积极探索标准模型尚未回答的一些关键问题。其中一个问题涉及我们宇宙中物质超过反物质的问题,我们建议使用最新的LHC数据来调查直接相关的问题。另一个方向涉及在对撞机和其他地方寻找新的粒子,这些粒子可能是暗物质的候选者。我们的科学家在暗物质理论方面具有专业知识,他们建议将LHC数据与天体物理观测和专门的暗物质搜索一起研究,以发现暗物质的起源。标准模型还有一个不足之处,那就是解释宇宙加速膨胀的“暗能量”,而这一点有压倒性的证据。我们建议研究暗能量理论,并进一步发展它们,以及它们与暗物质理论的相互作用。我们提出的所有工作都涉及将尖端的理论思想和技术与严格的方法论以及来自对撞机和宇宙学的最精确数据相结合。因此,我们认为,实现我们的目标将等同于科学进步,这将对我们的领域具有持久的价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mrinal Dasgupta其他文献

156 Comprehensive tissue banking: An Edmonton perspective
  • DOI:
    10.1016/j.cryobiol.2013.09.162
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tumelo Mokoena;Teresa Fernandez;Mike Bentley;Mrinal Dasgupta;Jelena Holovati
  • 通讯作者:
    Jelena Holovati
C-21: Clinical banking of amniotic membrane allografts
  • DOI:
    10.1016/j.cryobiol.2014.09.308
  • 发表时间:
    2014-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jelena L. Holovati;Natasha M.J. Perepelkin;Haiyan Jiao;Tumelo Mokoena;Teresa Fernandez;Mike Bentley;Mrinal Dasgupta;L.U. Ross-Rodriguez
  • 通讯作者:
    L.U. Ross-Rodriguez

Mrinal Dasgupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
  • 批准号:
    11905220
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
  • 批准号:
    21902147
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
  • 批准号:
    30560052
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Study of heating and particle acceleration on collisionless shocks with ground experiment, theory, and high energy resolution X-ray observations
利用地面实验、理论和高能量分辨率 X 射线观测研究无碰撞冲击的加热和粒子加速
  • 批准号:
    23H01211
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research in Particle Theory, Cosmology, and Quantum Gravity
粒子论、宇宙学和量子引力研究
  • 批准号:
    2310429
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Continuing Grant
Particle Physics - Theory, Quantum Field Theory
粒子物理-理论、量子场论
  • 批准号:
    2855977
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Studentship
South-East Particle Theory Alliance (SEPTA), 2023-26, UCL Node
东南粒子理论联盟(SEPTA),2023-26,伦敦大学学院节点
  • 批准号:
    ST/X000613/1
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Research Grant
Extension and demonstration of two-particle-level computational theory based on dimensionality reduction to nonlocal electron correlation effects
基于降维非局域电子相关效应的双粒子级计算理论的推广与论证
  • 批准号:
    22KK0226
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
  • 批准号:
    ST/X000494/1
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Research Grant
South East Particle Theory Alliance Sussex - Royal Holloway - UCL (SEPTA)
东南粒子理论联盟苏塞克斯 - 皇家霍洛威 - 伦敦大学学院 (SEPTA)
  • 批准号:
    ST/X000796/1
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Research Grant
Research in Elementary Particle Theory
基本粒子论研究
  • 批准号:
    2209903
  • 财政年份:
    2022
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Continuing Grant
Slender body theory and finite difference computations to characterize particle-fluid interactions at moderate Reynolds numbers
细长体理论和有限差分计算来表征中等雷诺数下的颗粒-流体相互作用
  • 批准号:
    2206851
  • 财政年份:
    2022
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Standard Grant
Particle and Quantum Field Theory Investigations
粒子和量子场论研究
  • 批准号:
    2210349
  • 财政年份:
    2022
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了