CONTROL OF CELL ELASTICITY BY THE ACTIN CORTEX
肌动蛋白皮层对细胞弹性的控制
基本信息
- 批准号:6362474
- 负责人:
- 金额:$ 10.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-03-18 至 2004-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Eukaryotic cells reversibly assemble the actin protein into filaments
which are then arrayed by accessory proteins into the actin cytoskeleton
(AC). Disruption of the AC is associated with significant cell
softening and in the case of migrating cells it also results in loss of
motility. The exact role of the AC in the mechanical strength of cells
is not fully understood. The AC can be roughly divided into two
superimposing elastic elements: a homogeneous network of protein
filaments predominantly underlying the plasma membrane and stress fibers
which span the cell interior. This proposal will focus on the
homogeneous cortical part of the AC. The proposed research takes two
novel approaches: (1) in vitro measurements will investigate how the
elastic response of actin networks is generated on the microscopic level
of a single actin filament in a network and (2) in vivo measurements of
the specific elasticity of the cortical AC will determine the role of
actin networks for whole cell elasticity.
Simultaneous measurements of the elastic properties of F-actin
solutions/gels and fluorescence microscopy of individual constituent
actin filaments under shear will provide detailed characterization of
the interactions between actin filaments which cause the elastic
behavior. These data will distinguish between recently suggested models
and lead to quantitative predictions of the strength of the AC as a
function of its composition. This knowledge will improve the
understanding of cell motility. A particular focus will be on how
transient crosslinkers and molecular motors modulate the strength of
these networks. Preliminary results indicate that inactive myosin II
acts as a crosslinker, whereas active myosin liquefies F-actin networks
in the absence of other crosslinking proteins. The dependence of the
mechanical strength on filament stiffness will be investigated as an
additional possibility in modulating the strength of actin networks.
To accurately measure cell elasticity of large, statistically
significant numbers of cells, an optical tool has been developed to non-
destructively stretch single cells between two beams of a laser.
Measurements of cells in suspension, which show a peripheral AC but no
stress fibers, will allow the PI to quantify the contribution of actin
networks to cell elasticity. The contribution of these networks to the
overall mechanical strength of cells will be determined by measuring the
elasticity of cells with varying ACs. This also allows determination
of the relevance of in vitro research on homogeneous actin networks for
the cell cytoskeleton. A primary focus will be the extent to which
malignant transformation of cells by oncogenic vectors -which is
correlated with changes of the AC - can be monitored by cell elasticity
measurements.
真核细胞可逆地将肌动蛋白组装成细丝
然后由辅助蛋白排列进入肌动蛋白细胞骨架
(Ac)。AC的中断与显著的细胞相关
软化,在迁移细胞的情况下,它还会导致
能动性。AC在细胞机械强度中的确切作用
还没有完全被理解。空调大致可以分为两个部分
叠加弹性元件:蛋白质的均质网络
主要位于质膜和应力纤维下面的细丝
横跨整个细胞内部。这项提案将重点放在
AC的同质皮质部分。拟议中的研究需要两项
新方法:(1)体外测量将调查
肌动蛋白网络的弹性响应是在微观水平上产生的
和(2)在体内测量
大脑皮层AC的特定弹性将决定
肌动蛋白网络的整个细胞弹性。
F-肌动蛋白弹性性质的同步测量
溶液/凝胶和单个组分的荧光显微镜
剪切下的肌动蛋白细丝将提供详细的特征
肌动蛋白细丝之间的相互作用导致弹性
行为。这些数据将区分最近建议的模型
并导致了对AC作为一种
其构成的功能。这一知识将提高
对细胞运动的理解。特别关注的将是如何
瞬时交联剂和分子马达调节细胞的强度
这些网络。初步结果表明,失活的肌球蛋白II
作为交联剂,而活性肌球蛋白液化F-肌动蛋白网络
在没有其他交联蛋白的情况下。对人类的依赖
对纤维硬度的机械强度将作为一种
调节肌动蛋白网络强度的另一种可能性。
为了准确测量大型细胞的弹性,统计
大量的细胞,一种光学工具已经被开发成非
在两束激光之间破坏性地拉伸单个细胞。
悬浮液中细胞的测量,显示外围AC,但没有
应激纤维,将允许PI量化肌动蛋白的贡献
网络到细胞弹性。这些网络对
电池的整体机械强度将通过测量
不同AC的细胞弹性。这也让我们能够下定决心
均相肌动蛋白网络的体外研究对
细胞的细胞骨架。一个主要的焦点将是在多大程度上
通过致癌载体使细胞恶性转化-这是
可通过细胞弹性监测与AC-的变化相关
测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEF A KAS其他文献
JOSEF A KAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEF A KAS', 18)}}的其他基金
CONTROL OF CELL ELASTICITY BY THE ACTIN CORTEX
肌动蛋白皮层对细胞弹性的控制
- 批准号:
6164030 - 财政年份:1999
- 资助金额:
$ 10.04万 - 项目类别:
CONTROL OF CELL ELASTICITY BY THE ACTIN CORTEX
肌动蛋白皮层对细胞弹性的控制
- 批准号:
6511906 - 财政年份:1999
- 资助金额:
$ 10.04万 - 项目类别:
CONTROL OF CELL ELASTICITY BY THE ACTIN CORTEX
肌动蛋白皮层对细胞弹性的控制
- 批准号:
2765342 - 财政年份:1999
- 资助金额:
$ 10.04万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 10.04万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 10.04万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 10.04万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 10.04万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 10.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 10.04万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 10.04万 - 项目类别:














{{item.name}}会员




