Structural Biology of RiboNucleoProtein complexes of pathogenic arena and bunyaviruses
致病领域和布尼亚病毒的核糖核蛋白复合物的结构生物学
基本信息
- 批准号:1646614
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
All negative sense RNA viruses (NSRVs) encapsidate their RNA genomes into ribonucleoprotein complexes (RNPs). RNPs are formed as viral Nucleocapsid (N) protein wraps around the genomic (and anti-genomic) RNA. RNPs must associate with their cognate polymerase to form active templates for viral RNA synthesis, resulting in generation of encapsidated replication products and unencapsidated mRNAs. RNP formation is also required for genome packaging into progeny virus particles, and for arenaviruses and bunyaviruses, virus assembly is mediated through direct association between the RNP and viral glycoproteins. RNP formation is thus essential for virus multiplication and therefore represents a potential therapeutic target.In addition to RNP formation and virus assembly, the N proteins of arenaviruses and bunyaviruses are implicated in other critical functions, many of which relate to interactions with components of the host cell. RNP formation is therefore a process that it is essential to understand, and may provide a target for anti-viral therapy.Objectives: Objective 1. Express (in E. coli) and purify recombinant N protein from example bunya and arena viruses such as Oropouche (an Orthobunyanvirus), Seoul virus (a Hantavirus), tomato spotted wilt virus (a Tospovirus), and Lujo virus (an Arenavirus). These will be used for in vitro testing using RNA binding assays e.g. by fluorescence anisotropy, and we will attempt to crystallise them both with and without RNA. Objective 2. Grow viruses in cell culture from each of the above families (choosing representatives of the appropriate containment level to allow them to be cultured at Leeds), and purify RNPs from live virus for EM work. Initially these will be characterized by 2D negative stain before taking the best examples into 3D cryo-EM.Objective 3. Use the structural data derived from the first two objectives to generate mutants to test function in cells such as mini-genome assays. Reverse genetics systems are already in use for Bunyamwera virus (in Leeds), Crimean Congo Hemorrhagic Fever virus and Oropouche virus.Novelty: Until very recently, nothing was known about the high-resolution structures of N proteins from NSRVs. We, and others, have been using a combination of classical cell and molecular biology with modern structural biology techniques to investigate N protein structure-function relationships to better understand virus biology. While progress in being made towards understanding RNPs, several questions have emerged relating to how RNPs are assembled, and how the encapsidated RNA is replicated by the viral polymerase. We aim to use an interdisciplinary approach to answer these pressing questions.Timeliness: The world is under constant threat from emergence of new virus strains including influenza, MERS and topically, Ebola virus. We aim to study the structural biology of RNP assembly and its architecture in two families of segmented NSRVs - Bunyaviruses and Arenaviruses. These are highly pathogenic in their own right and also are closely related to others such as influenza, and more distantly to Ebola, Mumps, Measles and Rabies viruses. Information of RNP structure and function will inform us on basic mechanisms such as control of viral gene expression and evading host immunity, and may therefore suggest routes to new antivirals.
所有负义RNA病毒(NSRV)都将其RNA基因组封装成核糖核蛋白复合体(RNPs)。RNPs是由病毒核衣壳(N)蛋白包裹在基因组(和反基因组)RNA上形成的。RNPs必须与它们的同源聚合酶结合,形成病毒RNA合成的活性模板,从而产生有囊化的复制产物和未囊化的mRNAs。RNP的形成也是基因组包装成后代病毒颗粒所必需的,对于ArenaVirus和BunyaVirus,病毒组装是通过RNP和病毒糖蛋白之间的直接结合来调节的。因此,RNP的形成对病毒的繁殖至关重要,因此是一个潜在的治疗靶点。除了RNP的形成和病毒组装外,ArenaVirus和BunyaVirus的N蛋白还参与其他关键功能,其中许多涉及与宿主细胞成分的相互作用。目的:1.在大肠杆菌中表达和纯化兔病毒和Arena病毒的重组N蛋白,如Oropouche病毒(Oropouche)、汉坦病毒(HantaVirus)、番茄斑萎病病毒(TospoVirus)和卢霍病毒(Lujo Virus)。这些将用于使用RNA结合分析的体外测试,例如通过荧光各向异性,我们将尝试在有和没有RNA的情况下结晶它们。目的2.在上述每个家族的细胞培养物中培养病毒(选择合适的遏制水平的代表以允许它们在利兹培养),并从活病毒中提纯RNP用于EM工作。首先,这些将通过2D负染进行表征,然后将最好的例子纳入3D冷冻-EM。目的3.使用前两个目标获得的结构数据来产生突变体,以测试细胞中的功能,如微基因组分析。反向遗传学系统已经被用于治疗布尼安韦拉病毒(利兹)、克里米亚刚果出血热病毒和奥罗波什病毒。新奇的是:直到最近,人们对NSRV N蛋白的高分辨率结构一无所知。我们和其他人一直在使用经典细胞和分子生物学与现代结构生物学技术相结合的方法来研究N蛋白结构-功能关系,以更好地了解病毒生物学。虽然在理解RNPs方面取得了进展,但也出现了一些问题,涉及RNPs是如何组装的,以及封装的RNA是如何被病毒聚合酶复制的。我们的目标是用跨学科的方法来回答这些紧迫的问题。时效性:世界不断受到新病毒株的威胁,包括流感、MERS和局部的埃博拉病毒。我们的目标是研究两个节段型NSRV-BunyaVirus和ArenaVirus中RNP组装的结构生物学及其结构。这些病毒本身具有很高的致病性,也与流感等其他病毒密切相关,更远的是与埃博拉、腮腺炎、麻疹和狂犬病病毒有关。RNP结构和功能的信息将为我们提供有关控制病毒基因表达和逃避宿主免疫等基本机制的信息,因此可能为开发新的抗病毒药物提供途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
An engineering biology approach for sustainable production of omega 3 and pigments from microalgae
一种利用微藻可持续生产 omega 3 和色素的工程生物学方法
- 批准号:
10107393 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Launchpad
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
- 批准号:
MR/Y019601/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
- 批准号:
BB/Y007735/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Preventing Plastic Pollution with Engineering Biology (P3EB) Mission Hub
利用工程生物学 (P3EB) 任务中心预防塑料污染
- 批准号:
BB/Y007972/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
GlycoCell Engineering Biology Mission Hub: Transforming glycan biomanufacture for health
GlycoCell 工程生物学任务中心:转变聚糖生物制造以促进健康
- 批准号:
BB/Y008472/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Postdoctoral Fellowship: STEMEdIPRF: Understanding instructor and student concepts of race to measure the prevalence of race essentialism in biology education
博士后奖学金:STEMEdIPRF:了解教师和学生的种族概念,以衡量生物教育中种族本质主义的流行程度
- 批准号:
2327488 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Hybridization and radiation: Integrating across phylogenomics, ancestral niche evolution, and pollination biology
职业:杂交和辐射:系统基因组学、祖先生态位进化和授粉生物学的整合
- 批准号:
2337784 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334954 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: REU Site: Summer Undergraduate Research Program in RNA and Genome Biology (REU-RGB)
合作研究:REU 网站:RNA 和基因组生物学暑期本科生研究计划 (REU-RGB)
- 批准号:
2349255 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
REU Site: Nature's machinery through the prism of Physics, Biology, Chemistry and Engineering
REU 网站:通过物理、生物、化学和工程学的棱镜观察自然的机器
- 批准号:
2349368 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant