Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology

清洁增长的可持续方式:通过工程生物学创新纺织品生产

基本信息

  • 批准号:
    BB/Y007735/1
  • 负责人:
  • 金额:
    $ 218.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

This Engineering Biology Mission Award project is an intensive 2-year program designed to use synthetic biology and microbial fermentation to rapidly bring Clean Growth benefits to one the worst-polluting sectors of global industry: fashion. The project brings together a set of expert teams based in Newcastle and London with UK SMEs and start-ups that are transforming the fashion sector via their use of microbially-made products. Our combined research efforts will be put to task on rapidly transforming the biological production of an exciting, innovative and environmentally friendly product that can rapidly be adopted by the fashion sector: microbial leather. We will develop and optimise a variety of sustainable and efficient biomanufacturing processes for producing a class of microbial leather based on bacterial cellulose, a high-performance biomaterial grown in high yield at low cost from the bacteria found in Kombucha fermentations. Our project is designed to use engineering biology approaches to immediately increase the efficiency of the environmentally friendly manufacturing process of producing this microbial leather. We will work together to engineer bacterial strains and use synthetic biology methods to enable high efficiency use of waste feedstocks, efficient water and nutrient usage, and innovative bio-based treatments for desirable properties, such as colouration, patterns, coatings and additives. The societal goal of this work is to create sustainable and renewable processes for a circular economy for microbial leather production and end-of-life. The project will contribute to the UK's Net-Zero targets by reducing carbon emissions and petrochemical use in the production of leather alternatives. Notably fashion is a crucial sector for UK economic growth but is entirely dependent on the global textiles industry, an industry that causes up to 10% of global carbon emissions, produces 20% of wastewater and 35% of marine microplastic pollution. This industry is projected to use up to 25% of the global carbon budget by 2050, and as such it is a key target for innovation for clean growth if the world is to meet its sustainability goals. Of all materials used in fashion, leather is particularly problematic, as cattle are the leading driver of deforestation, and chrome tanning creates widespread chemical pollution. No other material comes close for its all-round negative impact, and current plastics-based leather alternatives require incineration or landfill at their end of life, and so are not the desired alternative. For microbial leather to emerge as the ideal replacement to the world's use of bovine leather, we need to address 4 main technical challenges: 1: Reducing the need for using expensive sugar in the growth of bacterial cellulose 2: Removing the need to have separate processes for dyeing and patterning a material 3: Removing reliance on petrochemical-derived additives and toxic crosslinking methods 4: Improving durability but be able to still ensure natural degradation at end-of-life We aim to address these challenges by leveraging engineered biology for efficient material fabrication and controllable modification in a minimal number of steps. We will do this by engineering enzymes, microbes and microbial communities (E. coli, yeast, bacillus and Komagataeibacter) doing so in collaboration with the ideal set of UK industry partners; Colorifix, Modern Synthesis and Brewlab, With their help we will conduct pilot-scale production runs and process tests, and to ensure impact and a future beyond this award we will also engage with wider stakeholders, such as target industrial consumers, fashion designers and sustainability analysts that can help us determine the ideal route-to-market. In doing this project we will accelerate the UK's leadership in clean growth in fashion by helping replace leather with a low-impact, highly desirable microbially-made alternative.
这个工程生物学任务奖项目是一个为期2年的密集项目,旨在利用合成生物学和微生物发酵,迅速为全球工业中污染最严重的行业之一——时装业——带来清洁增长效益。该项目汇集了纽卡斯尔和伦敦的一组专家团队,以及通过使用微生物制造的产品来改变时尚行业的英国中小企业和初创企业。我们的联合研究工作将致力于快速转变一种令人兴奋的、创新的、环保的产品的生物生产,这种产品可以迅速被时尚界采用:微生物皮革。我们将开发和优化各种可持续和高效的生物制造工艺,以生产一类基于细菌纤维素的微生物皮革,这是一种高性能的生物材料,从康普茶发酵中发现的细菌中以低成本高产量生长。我们的项目旨在使用工程生物学方法来立即提高生产这种微生物皮革的环保制造过程的效率。我们将共同努力,设计细菌菌株,使用合成生物学方法,实现废物原料的高效利用,水和养分的高效利用,以及对理想性能的创新生物基处理,如着色、图案、涂料和添加剂。这项工作的社会目标是为微生物皮革生产和报废的循环经济创造可持续和可再生的过程。该项目将通过减少碳排放和皮革替代品生产中的石化使用,为英国的净零目标做出贡献。值得注意的是,时装业是英国经济增长的一个关键部门,但它完全依赖于全球纺织业,而纺织业占全球碳排放量的10%,产生20%的废水和35%的海洋微塑料污染。预计到2050年,该行业将消耗全球碳预算的25%,因此,如果世界要实现其可持续发展目标,它是清洁增长创新的关键目标。在所有用于时尚的材料中,皮革的问题尤其严重,因为牛是森林砍伐的主要驱动力,而铬鞣会造成广泛的化学污染。没有其他材料的全面负面影响能与之媲美,而目前基于塑料的皮革替代品在使用寿命结束时需要焚烧或填埋,因此不是理想的替代品。为了使微生物皮革成为世界上使用牛皮革的理想替代品,我们需要解决4个主要的技术挑战:1:减少在细菌纤维素生长过程中使用昂贵的糖的需求2:消除对材料染色和图案的单独过程的需求3:消除对石化衍生添加剂和有毒交联方法的依赖4:我们的目标是通过利用工程生物学来高效地制造材料,并在最少的步骤中进行可控的修改,从而解决这些挑战。我们将通过工程酶、微生物和微生物群落(大肠杆菌、酵母、芽孢杆菌和Komagataeibacter)与英国理想的行业合作伙伴合作来实现这一目标;Colorifix, Modern Synthesis和Brewlab,在他们的帮助下,我们将进行中试规模的生产运行和工艺测试,并确保在此奖项之后的影响和未来,我们还将与更广泛的利益相关者接触,例如目标工业消费者,时装设计师和可持续性分析师,他们可以帮助我们确定理想的市场路线。在这个项目中,我们将通过帮助用低影响、非常理想的微生物制造替代品取代皮革,加速英国在时尚清洁发展方面的领导地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Ellis其他文献

Chemical and Structural Information from the Enamel of a Troodon Tooth Leading to an Understanding of Diet and Environment
伤齿龙牙釉质的化学和结构信息有助于了解饮食和环境
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    R. Feng;J. Maley;G. Schatte;R. Hoffmeyer;K. Brink;Thomas Ellis;Donald J. Brinkman;R. Sammynaiken
  • 通讯作者:
    R. Sammynaiken
Borderline Dysplasia with Acetabular Retroversion: Key Findings in Large Hip Arthroscopy Study Group
  • DOI:
    10.1016/j.arthro.2020.12.087
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic S. Carreira;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis;Dominic Carreira
  • 通讯作者:
    Dominic Carreira
Patients Undergoing Hip Arthroscopy With Concomitant Periacetabular Osteotomy Demonstrate Clinically Meaningful Improvement at 2 Years Using the Patient-Reported Outcome Measurement Information System and International Hip Outcome Tool 12
接受髋关节镜检查并同时进行髋臼周围截骨术的患者,在使用患者报告的结果测量信息系统和国际髋关节结果工具12评估时,在2年时显示出有临床意义的改善。
Changes in Satisfaction and Functional Outcomes between Years One and Two After Hip Preservation Surgery
  • DOI:
    10.1016/j.arthro.2020.12.091
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic Carreira;Dean Matsuda;Benjamin Kivlan;Shane Nho;Andrew Wolff;John Salvo;John Christoforetti;Thomas Ellis
  • 通讯作者:
    Thomas Ellis
strongPodium Presentation Title:/strong Functional Outcomes and Return to Sport for Borderline Dysplasia Patients: Total Hip Arthroscopy vs. Hip Arthroscopy
**讲台展示标题:** 临界发育不良患者的功能结果及恢复运动情况:全髋关节镜检查与髋关节镜检查对比

Thomas Ellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Ellis', 18)}}的其他基金

CBET-EPSRC - Grown Engineered Materials (GEMs): synthetic consortia for biomanufacturing tunable composites
CBET-EPSRC - 生长工程材料 (GEM):生物制造可调复合材料的合成联盟
  • 批准号:
    EP/S032215/1
  • 财政年份:
    2020
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
[Australia] Construction of Synthetic Yeast Chromosomes using BioFoundries in United Kingdom and Australia
[澳大利亚] 使用英国和澳大利亚的 BioFoundries 构建合成酵母染色体
  • 批准号:
    BB/S020411/1
  • 财政年份:
    2019
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Towards Genomes-to-Design: Building and Testing a Minimal Essential Chromosome
迈向基因组设计:构建和测试最小必需染色体
  • 批准号:
    BB/R002614/1
  • 财政年份:
    2018
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Grow-Your-Own Composites: Programming Diverse Material Properties for Defence into Engineered Bacterial Cellulose
自行种植复合材料:将用于防御的多种材料特性编程到工程细菌纤维素中
  • 批准号:
    EP/N026489/1
  • 财政年份:
    2016
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
14TSB_SynBio A High Throughput Miniaturised Mass Spectrometry Tool for Profiling Synthetic Design Libraries
14TSB_SynBio 用于分析合成设计文库的高通量小型化质谱工具
  • 批准号:
    BB/M005577/1
  • 财政年份:
    2014
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Engineering Fellowships for Growth: Advanced synthetic biology measurement to enable programmable functional biomaterials
增长工程奖学金:先进的合成生物学测量,以实现可编程功能生物材料
  • 批准号:
    EP/M002306/1
  • 财政年份:
    2014
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Fellowship
Genome Organisation for Optimising Synthetic Secondary Metabolism
用于优化合成次级代谢的基因组组织
  • 批准号:
    BB/K006290/1
  • 财政年份:
    2013
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
The Sc2.0 UK Genome Engineering Resource (SUGER)
Sc2.0 英国基因组工程资源 (SUGER)
  • 批准号:
    BB/K019791/1
  • 财政年份:
    2013
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Engineered burden-based feedback for robust and optimised synthetic biology
工程化的基于负荷的反馈,用于稳健和优化的合成生物学
  • 批准号:
    EP/J021849/1
  • 财政年份:
    2013
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant
Engineered security systems for environmental synthetic biology
环境合成生物学工程安全系统
  • 批准号:
    BB/J019720/1
  • 财政年份:
    2012
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Research Grant

相似海外基金

Music Production Style Transfer (ProStyle)
音乐制作风格迁移 (ProStyle)
  • 批准号:
    10105431
  • 财政年份:
    2024
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Collaborative R&D
Doctoral Dissertation Research: Place, Persona, and Linguistic Style among College Student Border Commuters
博士论文研究:大学生边境通勤者的地点、角色和语言风格
  • 批准号:
    2336567
  • 财政年份:
    2024
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Standard Grant
Reconstruction of the life style at the hinterland waterfront of Alexandria: Targetting the temple precinct on the sandhill
亚历山大腹地海滨生活方式重建:以沙丘上的寺庙区为目标
  • 批准号:
    23H00697
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Style and cohesion in the Septuagint's kaige tradition: Ecclesiastes and Lamentations
七十士译本凯格传统的风格和凝聚力:传道书和哀歌
  • 批准号:
    2881782
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Studentship
Sustainable Crime Prevention Co-Education and Assessment Sheet for a New Style of Life
可持续预防犯罪共同教育和新生活方式评估表
  • 批准号:
    23K12783
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Style and expressions of the Memorial Prayers -Yoshishige no Yasutane's writings
纪念祈愿文的风格和表达——义重安种的著作
  • 批准号:
    22KJ2112
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The Introduction and Establishment of Western-style Bookbinding in Modern Japan
近代日本西式装订的引进和确立
  • 批准号:
    23K00281
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discrepancy between the transfer of Japanese-style management and its actual practice
日本式管理的转移与实际的差异
  • 批准号:
    23H00854
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Study on Utterance Style-dependent Speaker Verification
依赖于话语风格的说话人验证研究
  • 批准号:
    23K11165
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Leonard B. Meyer's Theories for Musical Emotion and Style Change with the Interdisciplinarity of Music Research History
伦纳德·B·迈耶的音乐情感和风格变化理论与音乐研究史的跨学科性
  • 批准号:
    23K12050
  • 财政年份:
    2023
  • 资助金额:
    $ 218.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了