Automatic Statistical Time-Frequency Analysis
自动统计时频分析
基本信息
- 批准号:6327454
- 负责人:
- 金额:$ 26.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-02-01 至 2003-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Non-stationary time series (i.e., time
series with statistical properties that vary over time) arise in many areas of
neuroscience research and clinical practice. For example, the spectral
properties of electroencephalograms (EEGs) vary with brain state, and
frequently this variation is of central clinical or scientific importance.
Existing methods of spectra analysis assume that a time series is a realization
of a stationary random process. These methods can be extended to non-stationary
processes using windowed Fourier transforms, but the number and size of the
windows must be chosen subjectively. We propose to develop improved, automatic
statistical methods for analysis of non-stationary multivariate time series. We
will evaluate the methods in applications to realistic simulated data and to
real multi-channel EEG data required from patients with brain disorders. We
will compare results from our automatic methods with the clinical judgments.
Our specific aims are to develop, evaluate, apply, implement, and distribute
the following statistical methods:
(1) an estimator of the time-varying power spectrum of a univariate random
process; (2) estimators of the time-varying spectral density matrix,
coherences, and phase spectra of a multivariate random process; (3)
time-frequency principal component analysis; (4) time-frequency filters; (5)
cycle-spinning to reduce bias due to the dyadic structure of our estimators;
and (6) univariate and multivariate processes that are smooth in both time and
frequency domains.
Our first proposed statistical methods are based on the Smooth Localized
complex Exponential (SLEX) transform, which provides a rich selection of
orthogonal transforms. The structure of the SLEX transform allows us to use the
computationally efficient Best Basis algorithm of Coifman and Wickerhauser to
automatically select a particular transform, which represents a segmentation of
a non-stationary time series into approximately stationary intervals.
Our second proposed approach (Aim 6) takes a new path. Unlike the traditional
approaches that focus on modeling the Periodiograms, we propose to model the
transfer function directly as a smooth function in both frequency and time
using smoothing splines and to use a signal-plus-noise model. By modeling the
transfer function directly, we alloy simultaneous smoothing in time and
frequency within the Fourier transformation. Unlike the periodiogram, the
transfer function preserves the phase information, and therefore the
time-varying cross-spectra, coherence, and phase can be directly calculated
from the transfer functions.
描述(由申请人提供):非平稳时间序列(即,时间
具有随时间变化的统计特性的序列)出现在许多领域,
神经科学研究和临床实践。例如,光谱
脑电图(EEG)的特性随大脑状态而变化,
这种变异经常具有重要的临床或科学意义。
现有的谱分析方法假设时间序列是一个实现
一个平稳随机过程。这些方法可以推广到非平稳
处理使用窗口傅立叶变换,但数量和大小的
必须主观地选择窗口。我们建议开发改进的,自动的
非平稳多变量时间序列分析的统计方法。我们
将评估应用于现实模拟数据的方法,
脑功能障碍患者所需的真实的多通道EEG数据。我们
将把我们的自动方法的结果与临床判断进行比较。
我们的具体目标是开发、评估、应用、实施和分发
以下统计方法:
(1)一元随机时变功率谱的估计
过程;(2)时变谱密度矩阵的估计,
相干性和多变量随机过程的相谱;(3)
时频主成分分析;(4)时频滤波器;(5)
循环旋转,以减少由于我们的估计的二元结构的偏差;
以及(6)在时间和时间上都是平滑的单变量和多变量过程,
频域
我们首先提出的统计方法是基于平滑局部化
复杂指数(SLEX)变换,它提供了丰富的选择,
正交变换SLEX变换的结构允许我们使用
Coifman和Wickerhauser的计算效率最高的基础算法,
自动选择一个特定的变换,它代表一个分割,
将非平稳时间序列分解为近似平稳的时间间隔。
我们提出的第二种方法(目标6)采取了一种新的途径。
的方法,专注于建模的Periodiograms,我们建议建模的
传递函数直接作为频率和时间的平滑函数
使用平滑样条和使用信号加噪声模型。通过模拟
直接传递函数,我们合金同时平滑的时间和
傅里叶变换中的频率。与周期图不同,
传递函数保留了相位信息,因此
可以直接计算时变互谱、相干性和相位
传递函数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENSHENG GUO其他文献
WENSHENG GUO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENSHENG GUO', 18)}}的其他基金
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10554348 - 财政年份:2020
- 资助金额:
$ 26.17万 - 项目类别:
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10274119 - 财政年份:2020
- 资助金额:
$ 26.17万 - 项目类别:
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10320487 - 财政年份:2020
- 资助金额:
$ 26.17万 - 项目类别:
Semi-Parametric Subgroup Analysis for Longitudinal Data with Applications to Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Study
纵向数据的半参数亚组分析及其在慢性盆腔疼痛 (MAPP) 研究的多学科方法中的应用
- 批准号:
10348142 - 财政年份:2019
- 资助金额:
$ 26.17万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8708158 - 财政年份:2013
- 资助金额:
$ 26.17万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8897406 - 财政年份:2013
- 资助金额:
$ 26.17万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8419665 - 财政年份:2013
- 资助金额:
$ 26.17万 - 项目类别: