Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources

使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19

基本信息

  • 批准号:
    10554348
  • 负责人:
  • 金额:
    $ 66.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-21 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Abstract With older age and multiple comorbidities, dialysis patients are at high risk for serious complications, even death, from COVID-19. There is a large disproportionate representation of minorities, especially Blacks and Hispanics. Over 85% of hemodialysis patients travel three times a week to dialysis facilities to receive life-sustaining treatments and cannot shelter in place. There is a critical need to characterize COVID-19 transmission pathways in dialysis patients and clinics, identify potential coronavirus carriers, and develop procedures to curb the spread. With regular medical encounters, a large amount of data has been collected for each patient over time. These data have not been fully utilized for COVID-19 prediction and control in dialysis clinics. In this proposal, we seek to leverage demographic, clinical, treatment, laboratory, socioeconomic, serological, metabolomic, wearable and machine-integrated sensors, and COVID-19 surveillance data to develop mathematical and statistical models and implement them in a large number of dialysis clinics. The mathematical and statistical modeling using multiple data resources will help us understand how COVID-19 spread in dialysis facilities, identify potential COVID-19 patients before symptoms appear, and identify potential asymptomatic COVID-19 patients. We will develop novel mathematical and statistical models that fully utilize the high dimensional multimodal data available to us and other dialysis providers. We capitalize on the intrinsic advantages of hemodialysis clinics to implement and validate the proposed prediction models. We firmly believe that this cross-disciplinary effort will improve patients’ and staff’s safety while delivering high-quality, individualized care to a high-risk population.
摘要 随着年龄的增长和多种合并症,透析患者发生严重并发症甚至死亡的风险很高, 从COVID-19少数民族,特别是黑人和西班牙裔人的代表比例过高。 超过85%的血液透析患者每周三次前往透析机构接受维持生命的治疗。 治疗,不能就地避难。迫切需要描述COVID-19传播途径的特征 在透析患者和诊所,识别潜在的冠状病毒携带者,并制定程序来遏制传播。 通过定期的医疗接触,随着时间的推移,已经为每个患者收集了大量的数据。这些 数据尚未充分用于透析诊所的COVID-19预测和控制。在这一建议中,我们寻求 利用人口统计学、临床、治疗、实验室、社会经济学、血清学、代谢组学、可穿戴和 机器集成传感器和COVID-19监测数据,以开发数学和统计模型 并在大量的透析诊所中实施。数学和统计建模使用 多种数据资源将帮助我们了解COVID-19如何在透析设施中传播, COVID-19患者出现症状之前,并识别潜在的无症状COVID-19患者。我们将 开发新的数学和统计模型,充分利用高维多模态数据 提供给我们和其他透析提供者。我们利用血液透析诊所的固有优势, 实施并验证所提出的预测模型。我们坚信,这种跨学科的努力将 改善患者和工作人员的安全,同时为高危人群提供高质量的个性化护理。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Testing of worn face mask and saliva for SARS-CoV-2.
  • DOI:
    10.3389/fpubh.2023.1237512
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Wang, Xiaoling;Thwin, Ohnmar;Haq, Zahin;Dong, Zijun;Tisdale, Lela;Fuentes, Lemuel Rivera;Grobe, Nadja;Kotanko, Peter
  • 通讯作者:
    Kotanko, Peter
SARS-CoV-2 Seropositivity Rates in Patients and Clinical Staff in New York City Dialysis Facilities: Association With the General Population.
  • DOI:
    10.1016/j.xkme.2021.02.010
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Thwin O;Grobe N;Tapia Silva LM;Ye X;Zhang H;Wang Y;Kotanko P
  • 通讯作者:
    Kotanko P
Time-to-Event Analysis with Unknown Time Origins via Longitudinal Biomarker Registration.
通过纵向生物标记注册进行未知时间起源的事件时间分析。
SARS-CoV-2 neutralizing antibody response after three doses of mRNA1273 vaccine and COVID-19 in hemodialysis patients.
  • DOI:
    10.3389/fneph.2022.926635
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Xiaoling;Han, Maggie;Kotanko, Peter
  • 通讯作者:
    Kotanko, Peter
Arterial oxygen saturation and hypoxemia in hemodialysis patients with COVID-19.
  • DOI:
    10.1093/ckj/sfab019
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Preciado P;Tapia Silva LM;Ye X;Zhang H;Wang Y;Waguespack P;Kooman JP;Kotanko P
  • 通讯作者:
    Kotanko P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WENSHENG GUO其他文献

WENSHENG GUO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WENSHENG GUO', 18)}}的其他基金

Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
  • 批准号:
    10274119
  • 财政年份:
    2020
  • 资助金额:
    $ 66.63万
  • 项目类别:
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
  • 批准号:
    10320487
  • 财政年份:
    2020
  • 资助金额:
    $ 66.63万
  • 项目类别:
Semi-Parametric Subgroup Analysis for Longitudinal Data with Applications to Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Study
纵向数据的半参数亚组分析及其在慢性盆腔疼痛 (MAPP) 研究的多学科方法中的应用
  • 批准号:
    10348142
  • 财政年份:
    2019
  • 资助金额:
    $ 66.63万
  • 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
  • 批准号:
    8708158
  • 财政年份:
    2013
  • 资助金额:
    $ 66.63万
  • 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
  • 批准号:
    8897406
  • 财政年份:
    2013
  • 资助金额:
    $ 66.63万
  • 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
  • 批准号:
    8419665
  • 财政年份:
    2013
  • 资助金额:
    $ 66.63万
  • 项目类别:
NEW FUNCTIONAL MODELS FOR BIOMEDICAL DATA
生物医学数据的新功能模型
  • 批准号:
    6626740
  • 财政年份:
    2000
  • 资助金额:
    $ 66.63万
  • 项目类别:
New functional models for biomedical data
生物医学数据的新功能模型
  • 批准号:
    7147732
  • 财政年份:
    2000
  • 资助金额:
    $ 66.63万
  • 项目类别:
Automatic Statistical Time-Frequency Analysis
自动统计时频分析
  • 批准号:
    6327454
  • 财政年份:
    2000
  • 资助金额:
    $ 66.63万
  • 项目类别:
NEW FUNCTIONAL MODELS FOR BIOMEDICAL DATA
生物医学数据的新功能模型
  • 批准号:
    6342219
  • 财政年份:
    2000
  • 资助金额:
    $ 66.63万
  • 项目类别:

相似海外基金

New Electrodes for Enabling Inclusive EEG Monitoring in Black Populations
新电极可实现黑人群体的包容性脑电图监测
  • 批准号:
    10484809
  • 财政年份:
    2022
  • 资助金额:
    $ 66.63万
  • 项目类别:
The COVID-R3ICSAB Study: COVID-19 Wide Impact: Research on the Risk and Resilience In Special Communities of Chinese, South Asian and Black Populations
COVID-R3ICSAB 研究:COVID-19 广泛影响:华人、南亚人和黑人特殊社区的风险和复原力研究
  • 批准号:
    460283
  • 财政年份:
    2021
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Operating Grants
Exploring the Acceptability and Feasibility of New HIV Prevention Technologies for African, Caribbean and Black Populations in Toronto
在多伦多探索新的艾滋病毒预防技术对非洲、加勒比和黑人群体的可接受性和可行性
  • 批准号:
    314173
  • 财政年份:
    2014
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Operating Grants
AVOIDABLE MORTALITY FROM CANCERS IN BLACK POPULATIONS
可避免的黑人癌症死亡
  • 批准号:
    3621878
  • 财政年份:
    1986
  • 资助金额:
    $ 66.63万
  • 项目类别:
AVOIDABLE MORTALITY FROM CANCERS IN BLACK POPULATIONS
可避免的黑人癌症死亡
  • 批准号:
    3621885
  • 财政年份:
    1986
  • 资助金额:
    $ 66.63万
  • 项目类别:
AVOIDABLE MORTALITY FROM CANCERS IN BLACK POPULATIONS
可避免的黑人癌症死亡
  • 批准号:
    3621890
  • 财政年份:
    1986
  • 资助金额:
    $ 66.63万
  • 项目类别:
AVOIDABLE MORTALITY FROM CANCERS IN BLACK POPULATIONS
可避免的黑人癌症死亡
  • 批准号:
    3621874
  • 财政年份:
    1986
  • 资助金额:
    $ 66.63万
  • 项目类别:
AVOIDABLE MORTALITY FROM CANCERS IN BLACK POPULATIONS
可避免的黑人癌症死亡
  • 批准号:
    3621312
  • 财政年份:
    1986
  • 资助金额:
    $ 66.63万
  • 项目类别:
AVOIDABLE MORTALITY FROM CANCERS IN BLACK POPULATIONS
可避免的黑人癌症死亡
  • 批准号:
    3621322
  • 财政年份:
    1986
  • 资助金额:
    $ 66.63万
  • 项目类别:
AVOIDABLE MORTALITY FROM CANCERS IN BLACK POPULATIONS
可避免的黑人癌症死亡
  • 批准号:
    3621321
  • 财政年份:
    1986
  • 资助金额:
    $ 66.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了