Physiological Substrates of a Circadian Oscillator

昼夜节律振荡器的生理基础

基本信息

项目摘要

DESCRIPTION (applicant's abstract): Our objective is to understand mechanisms whereby interacting chemical messengers transduce light information from the eye via the retinohypothalamic tract (RHT) to the circadian clock in the suprachiasmatic nucleus (SCN). This process decodes photic information from external light in the context of internal state. Under the present award, we discovered that the chemical signal from the RHT is more complex than previously thought. Pituitary adenyl cyclase-activating peptide (PACAP) and glutamate (Glu) co-localize within terminals of retinal ganglion cells innervating the SCN. We found evidence for functional interaction both in vivo and in vitro: in early night, PACAP potentiated Glu-induced phase delay of SCN rhythms, while in late night it blocked Glu-induced phase advance. Thus, responses to these signals are state-dependent and clock-controlled. How does PACAP interact with Glu to encode light signals at the SCN? What cellular processes integrate combinatorial signaling events to modulate amplitude and direction of phase resetting differentially in early vs. late night? We will evaluate PACAP and Glu actions and interactions during photic signaling in vivo, release from the RHT, signal transduction(s) and consequent molecular events in early vs. late night. Hypotheses to be tested are that: 1) the light signal contains both Glu- and PACAP-ergic components that interact producing graded changes in clock phase, and 2) the clock's responses to PACAP and Glu change between early and late night due to differential effects of clock-gated cAMP/PKA signaling and the state of the molecular clockworks. Multiple indices of change will be measured: rhythms of behavior, oscillation of SCN neuronal activity, and levels/localizations of putative clock elements in rodent models. This multidisciplinary approach will provide insights into classical (Glu) and modulatory (PACAP) neurotransmission, cellular and molecular mechanisms of signal integration, and decision-making processes that alter neuronal state. These are fundamental issues in neuroscience. Signal transduction is a cellular process, and by identifying the relevant neurotransmitters, receptors, second messenger systems and targets, we will be able to understand the causal mechanisms the mediate differential state changes in the clock. This research is basic to understanding integrative brain function. It has applied relevance for strategies in drug chronotherapeutics and will facilitate developing rationally-based therapies for timing disorders, including internal desynchronizations manifested as disordered patterns of sleep, cognitive and autonomic function, neurological impairment in aging and depressive states.
描述(申请人摘要):我们的目标是了解机制 从而相互作用的化学信使将光信息从 眼通过视网膜下丘脑束(RHT)的昼夜节律钟, 视交叉上核(SCN)。这个过程解码光信息从 在内部状态的背景下的外部光。在本奖项下,我们 发现来自RHT的化学信号比 以前认为。腺苷酸环化酶激活肽(PACAP)和 谷氨酸(Glu)共定位于视网膜神经节细胞的终末内 支配SCN。我们发现了在体内和体外 在离体条件下:在夜间,PACAP增强Glu诱导的SCN时相延迟 节律,而在深夜,它阻止Glu诱导的相位提前。因此,在本发明中, 对这些信号的响应是状态相关的和时钟控制的。如何 PACAP与Glu相互作用以编码SCN处的光信号?哪些细胞 过程整合组合信号传导事件以调节振幅, 相位重置方向的差异,在早期与深夜?我们将 评估PACAP和Glu在光信号传导过程中的作用和相互作用, 体内,从RHT释放,信号转导和随后的分子 活动在凌晨VS深夜。待检验的假设是:1)光 信号包含Glu-和PACAP-能组分,其相互作用产生 时钟相位的分级变化,以及2)时钟对PACAP和Glu的响应 由于时钟门控的差异效应, cAMP/PKA信号传导和分子时钟的状态。多个索引 将测量的变化:节奏的行为,振荡的SCN神经元 活动和啮齿动物模型中假定的时钟元件的水平/定位。 这种多学科的方法将提供对经典(Glu)和 调节(PACAP)神经传递,细胞和分子机制, 信号整合和改变神经元状态的决策过程。 这些都是神经科学的基本问题。信号转导是一种细胞 过程,并通过识别相关的神经递质,受体,第二 信使系统和目标,我们将能够理解因果关系 调节时钟中的差分状态变化的机制。本研究 是理解大脑综合功能的基础它具有应用相关性 药物时间治疗学的策略,并将促进开发 合理的治疗时间障碍,包括内部 表现为睡眠、认知和 自主神经功能,衰老和抑郁状态下的神经损伤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martha U Gillette其他文献

Martha U Gillette的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martha U Gillette', 18)}}的其他基金

Dynamic Circadian Regulation of the Blood-Brain Interface in a Human Brain-mimicking Microfluid Chip
模拟人脑微流体芯片中血脑界面的动态昼夜节律调节
  • 批准号:
    10318466
  • 财政年份:
    2021
  • 资助金额:
    $ 37.78万
  • 项目类别:
Dynamic Circadian Regulation of the Blood-Brain Interface in a Human Brain-mimicking Microfluid Chip
模拟人脑微流体芯片中血脑界面的动态昼夜节律调节
  • 批准号:
    10912839
  • 财政年份:
    2021
  • 资助金额:
    $ 37.78万
  • 项目类别:
High Resolution Analysis of miR125b in Dendrites via Microfluidic Devices
通过微流体装置对树突中的 miR125b 进行高分辨率分析
  • 批准号:
    8571230
  • 财政年份:
    2013
  • 资助金额:
    $ 37.78万
  • 项目类别:
Nano-Scale Processes of Dendrogenesis
树突发生的纳米级过程
  • 批准号:
    7882602
  • 财政年份:
    2009
  • 资助金额:
    $ 37.78万
  • 项目类别:
Nano-Scale Processes of Dendrogenesis
树突发生的纳米级过程
  • 批准号:
    7740046
  • 财政年份:
    2009
  • 资助金额:
    $ 37.78万
  • 项目类别:
Neuropeptidomics of Clock-to-Clock Coupling
时钟与时钟耦合的神经肽组学
  • 批准号:
    7736240
  • 财政年份:
    2009
  • 资助金额:
    $ 37.78万
  • 项目类别:
Neuropeptidomics of Clock-to-Clock Coupling
时钟与时钟耦合的神经肽组学
  • 批准号:
    7924746
  • 财政年份:
    2009
  • 资助金额:
    $ 37.78万
  • 项目类别:
Actin-based Neuronal State Changes
基于肌动蛋白的神经元状态变化
  • 批准号:
    7321299
  • 财政年份:
    2007
  • 资助金额:
    $ 37.78万
  • 项目类别:
Actin-based Neuronal State Changes
基于肌动蛋白的神经元状态变化
  • 批准号:
    7683239
  • 财政年份:
    2007
  • 资助金额:
    $ 37.78万
  • 项目类别:
Actin-based Neuronal State Changes
基于肌动蛋白的神经元状态变化
  • 批准号:
    7488953
  • 财政年份:
    2007
  • 资助金额:
    $ 37.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了