Nano-Scale Processes of Dendrogenesis
树突发生的纳米级过程
基本信息
- 批准号:7882602
- 负责人:
- 金额:$ 19.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAdvanced DevelopmentAgingAlzheimer&aposs DiseaseAnalytical ChemistryArchitectureArtsBehaviorBindingBiologicalBrainBrain DiseasesCellsChemicalsComplexCuesDefectDendritesDendritic SpinesDevelopmentDevicesDiseaseEngineeringEnvironmentEnvironmental Risk FactorFilopodiaGenerationsGoalsGrowthHippocampus (Brain)ImageIn VitroIndividualLengthMental DepressionMental HealthMethodsMicrofluidicsMicroscopyModelingMonitorMorphogenesisNanotechnologyNervous system structureNeuritesNeuronsNeurosciencesOpticsParkinson DiseasePatternPhysical environmentPhysiologic pulsePopulationPositioning AttributeProcessPropertyRattusRestRoleSamplingSchizophreniaScienceShapesSignal TransductionSignaling MoleculeSiteSolutionsStimulusStructureSurfaceSynapsesSystemThree-Dimensional ImageTimeTransgenic MiceVertebral columnWidthWorkage relatedchemical bindingdensitydesigneconomic costexperienceimprintimprovedinformation processinginnovationinsightnanolitrenanoscaleneuron developmentnovelpresynapticprogramspublic health relevancerelating to nervous systemrepairedresearch studyresponserestorationsuccesstool
项目摘要
DESCRIPTION (provided by applicant): Proper wiring of the nervous system requires interplay of intrinsic and extrinsic signals that shape neurite development, architecture and function. Whereas axonal development is relatively well understood, less is known of the forces that shape dendrites, especially the nano-scale filopodia that decorate developing dendritic shafts. What factors influence dendritic filopodia during wiring of brain circuits? Do filopodia contribute to formation of dendritic spines, sites of synaptic information processing and plasticity? We hypothesize that chemical cues in substrate-bound gradients instruct dendrite morphogenesis and maturation via nanometer-scale changes that transform collateral filopodia into spines. We will build upon our recent success in culturing hippocampal neurons from early post-natal rat at very low densities in refined microfluidic environments. Centered in neuroscience, this R21 proposal bridges with materials science to create and exploit complex gradient chemical fields-ones embedding nanometer scale design rules and capable of imprinting the physical environments of neurons in culture with specific immobilized and diffusive factors. These experimental competencies are provided by state-of-the-art microfluidic systems that exploit a variety of physical behaviors to actuate programmed chemo-temporal profiles within the device. Specific aims are to: 1) characterize collateral filopodial behavior in response to 2D surface gradients of bioactive molecules, and 2) build upon these findings to construct 3D gradient environments that encourage filopodial differentiation and enable responses to diffusive stimuli. Models are hippocampal neurons of early post-natal rat and EGFP-actin transgenic mouse. We seek to discover novel insights, solutions and applications that impact mental health, neural repair and restoration of function. The intransigence of brain disorders and damage to treatment is of rising concern as many incurable conditions (schizophrenia, depression, Parkinson's and Alzheimer's disease) have huge economic costs and will increase with the aging of our population. PUBLIC HEALTH RELEVANCE: Nano-scale Processes of Dendrogenesis Proper wiring of the nervous system requires interplay of intrinsic and extrinsic signals that shape neurite development, architecture and function. This proposal seeks to understand the role of nano-scale filopodia in hippocampal dendrogenesis and spine formation by bridging neuroscience with materials science to create and exploit complex gradient chemical fields embedding nanometer-scale design features in nanoliter physical environments. This innovative approach positions us to discover novel insights for normal dendritic spine formation that will offer new strategies, solutions and applications that impact mental health, neural repair and restoration of function, which are of rising concern as many incurable conditions (schizophrenia, depression, Parkinson's and Alzheimer's disease) have huge economic costs and will increase with the aging of our population.
描述(由申请人提供):神经系统的正确连接需要内在和外在信号的相互作用,这些信号形成神经突起的发育、结构和功能。虽然轴突的发育相对较好,但对形成树突的力量知之甚少,特别是装饰正在发育的树突轴的纳米级丝状足细胞。在大脑回路的连线过程中,哪些因素会影响树突状丝状足细胞?丝状伪足是否有助于树突棘、突触信息处理和可塑性的形成?我们假设,底物结合梯度中的化学线索通过纳米尺度的变化指示树突的形态发生和成熟,将侧丝足细胞转化为棘突。我们将在我们最近的成功基础上,在精致的微流体环境中以非常低的密度培养出生后早期大鼠的海马神经元。以神经科学为中心,R21提案与材料科学建立了桥梁,以创建和利用复杂的梯度化学场-嵌入纳米级设计规则的场,并能够用特定的固定和扩散因素在培养中的神经元的物理环境中留下印记。这些实验能力是由最先进的微流控系统提供的,这些系统利用各种物理行为来激活设备内的编程化学-时间分布。具体目标是:1)表征侧支丝径行为对生物活性分子的2D表面梯度的响应,以及2)在这些发现的基础上构建3D梯度环境,鼓励丝径分化并使其能够对扩散刺激做出反应。模型为生后早期大鼠海马神经元和绿色荧光蛋白-肌动蛋白转基因小鼠。我们寻求发现影响心理健康、神经修复和功能恢复的新见解、解决方案和应用。由于许多无法治愈的疾病(精神分裂症、抑郁症、帕金森氏症和阿尔茨海默氏症)都有巨大的经济成本,而且随着人口老龄化,这些疾病将会增加,因此大脑疾病的顽固和对治疗的损害越来越令人担忧。与公共健康相关:树突状细胞的纳米级过程需要神经系统的正确连接,需要形成神经突起发育、结构和功能的内在和外在信号的相互作用。这项提议试图通过将神经科学与材料科学联系起来,创建和开发复杂的梯度化学场,在纳升物理环境中嵌入纳米级设计特征,来了解纳米级丝状足细胞在海马树突形成和脊椎形成中的作用。这种创新的方法使我们能够发现对正常树突棘形成的新见解,这将提供影响心理健康、神经修复和功能恢复的新策略、解决方案和应用,随着许多不可治愈的疾病(精神分裂症、抑郁症、帕金森氏症和阿尔茨海默病)具有巨大的经济成本,并将随着人口老龄化而增加,这些问题日益受到关注。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures.
- DOI:10.1002/adfm.201001746
- 发表时间:2011-01-07
- 期刊:
- 影响因子:19
- 作者:Shepherd, Jennifer N. Hanson;Parker, Sara T.;Shepherd, Robert F.;Gillette, Martha U.;Lewis, Jennifer A.;Nuzzo, Ralph G.
- 通讯作者:Nuzzo, Ralph G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martha U Gillette其他文献
Martha U Gillette的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martha U Gillette', 18)}}的其他基金
Dynamic Circadian Regulation of the Blood-Brain Interface in a Human Brain-mimicking Microfluid Chip
模拟人脑微流体芯片中血脑界面的动态昼夜节律调节
- 批准号:
10318466 - 财政年份:2021
- 资助金额:
$ 19.81万 - 项目类别:
Dynamic Circadian Regulation of the Blood-Brain Interface in a Human Brain-mimicking Microfluid Chip
模拟人脑微流体芯片中血脑界面的动态昼夜节律调节
- 批准号:
10912839 - 财政年份:2021
- 资助金额:
$ 19.81万 - 项目类别:
High Resolution Analysis of miR125b in Dendrites via Microfluidic Devices
通过微流体装置对树突中的 miR125b 进行高分辨率分析
- 批准号:
8571230 - 财政年份:2013
- 资助金额:
$ 19.81万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.81万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.81万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.81万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.81万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.81万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.81万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.81万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.81万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.81万 - 项目类别:
Research Grant














{{item.name}}会员




