Thermally Efficient GaN Devices for High Performance Microwave Amplifiers
用于高性能微波放大器的热效率 GaN 器件
基本信息
- 批准号:1805503
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last decade a significant effort has been made in the development of Gallium Nitride (GaN) based High Electron Mobility Transistors (HEMTs). This has resulted in the demonstration of clear benefits of this technology with GaN based electronic devices offering up to 5 times higher power density than devices produced in Gallium Arsenide (GaAs). It has also been shown that this high power density can be traded for improved efficiency or increased total power compared to conventional GaAs based products. The higher power density, however, also means that waste heat energy per unit area in the devices is higher and without its efficient removal results in devices operating at high channel temperatures, which both degrades the device performance and reliability. Indeed, today's GaN devices are thermally limited and have to be significantly de-rated to limit channel temperatures to under 200 degC for improved RF performance and a significantly improved mean-time-to-failure (MTTF). Nonetheless, it is now also clear that GaN based RF transistors will be the microwave technology of choice for many future applications. Indeed, GaN amplifiers already offer unparalleled performance for base stations, industrial scientific & medical, and aerospace & defence applications, but improvement in thermal management is required to reap the benefits.Aims and objectives:This project seeks to develop thermally enhanced GaN-based HEMT RF electronic devices grown on the high thermal conductivity Silicon Carbide (SiC) substrates. It has the following objectives: 1) Design, fabrication and characterization small gate periphery GaN-based HEMT devices with integrated thermal pathways and with: a) a power density of over 20 W/mm and b) unity current gain and power gain current cut-off frequencies in excess of 50 GHz; and 2) Realization and characterisation of devices with large gate periphery capable of delivering 10 - 100 W RF power per device.Novelty of the research methodology:On this project, various thermal management strategies including the use of integrated thermal vias and distributed gate designs will be investigated. Preliminary experimental and simulation results indicate that significant improvements in device performance can be achieved. Device characterisation using load pull and S-parameter measurements will provide the feedback required for technology optimisation.Alignment to EPSRC's strategies and research areas:The research topic is aligned to EPSRC priority areas of RF and Microwave Devices, Non-CMOS Device Technology and Manufacturing the Future.Its potential applications and benefits:RF and microwave applications are becoming increasingly important as the world becomes more reliant upon wireless communications and radar systems. RF GaN transistors have the potential to be the RF enabling technology for advancing systems in these sectors; GaN devices with improved thermal management will further accelerate these developments. Depending on which market report you read, the RF and microwave components sector is estimated at $1 billion dollars, with 40% of devices purchased for communications base stations. Industrial and emerging commercial markets will use these transistors for example in high lumen lighting for industrial processes, architectural design, stage and stadia, industrial/domestic high-efficiency heating, as well as medical irradiation.
在过去的十年中,在基于氮化镓(GaN)的高电子迁移率晶体管(HEMT)的开发中已经做出了显著的努力。这已经证明了这项技术的明显优势,GaN基电子器件的功率密度比砷化镓(GaAs)生产的器件高出5倍。还表明,与传统的基于GaAs的产品相比,这种高功率密度可以换取提高的效率或增加的总功率。然而,更高的功率密度也意味着器件中每单位面积的废热能更高,并且在没有有效去除废热能的情况下,导致器件在高沟道温度下操作,这都降低了器件性能和可靠性。事实上,当今的GaN器件受到热限制,并且必须显著降低额定值以将沟道温度限制在200摄氏度以下,以改善RF性能并显著改善平均故障时间(MTTF)。尽管如此,现在也很清楚,GaN基RF晶体管将成为许多未来应用的微波技术选择。事实上,GaN放大器已经为基站、工业科学和医疗以及航空航天和国防应用提供了无与伦比的性能,但需要改进热管理才能获得这些好处。目的和目标:本项目旨在开发在高热导率碳化硅(SiC)衬底上生长的热增强GaN基HEMT RF电子器件。1)设计、制备和表征具有集成热通路的小栅周GaN基HEMT器件,其具有:a)大于20 W/mm的功率密度和B)单位电流增益和功率增益电流截止频率大于50 GHz;以及2)具有每个器件能够提供10 - 100 W RF功率的大栅极外围的器件的实现和表征。研究方法的新奇:在这个项目中,将研究各种热管理策略,包括使用集成热通孔和分布式栅极设计。初步的实验和模拟结果表明,器件性能的显着改善,可以实现。利用负载牵引和S参数测量的器件特性将为技术优化提供所需的反馈。与EPSRC的战略和研究领域相一致:研究主题与EPSRC的RF和微波器件、非CMOS器件技术和未来制造的优先领域相一致。其潜在应用和好处:随着世界越来越依赖无线通信和雷达系统,RF和微波应用变得越来越重要。RF GaN晶体管有可能成为这些领域中推进系统的RF使能技术;具有改进的热管理的GaN器件将进一步加速这些发展。根据您阅读的市场报告,RF和微波元件行业估计为10亿美元,其中40%的设备用于通信基站。工业和新兴商业市场将使用这些晶体管,例如用于工业过程的高流明照明,建筑设计,舞台和体育场,工业/家用高效加热以及医疗辐照。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AIGaN/GaN HEMT with Distributed Gate for Improved Thermal Performance
具有分布式栅极的 AIGaN/GaN HEMT 可提高热性能
- DOI:10.23919/eumic.2018.8539896
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Elksne M
- 通讯作者:Elksne M
A Planar Distributed Channel AlGaN/GaN HEMT Technology
平面分布沟道AlGaN/GaN HEMT技术
- DOI:10.1109/ted.2019.2907152
- 发表时间:2019
- 期刊:
- 影响因子:3.1
- 作者:Elksne M
- 通讯作者:Elksne M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Vertical GaN-on-Si membrane power transistors: Efficient power electronics for mass-market applications (VertiGaN)`
垂直硅基氮化镓薄膜功率晶体管:面向大众市场应用的高效电力电子器件 (VertiGaN)`
- 批准号:
EP/X014924/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
SBIR Phase I: Manufacturing of gallium nitride (GaN) membranes for efficient thermal management
SBIR 第一阶段:制造氮化镓 (GaN) 膜以实现高效热管理
- 批准号:
2135112 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Highly efficient GaN-based cascaded LEDs
高效 GaN 基级联 LED
- 批准号:
447864265 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Feasibility assessment of a novel light-weight ultra-efficient Gallium Nitride (GaN) traction inverter for ultra-low emission vehicles
用于超低排放车辆的新型轻质超高效氮化镓 (GaN) 牵引逆变器的可行性评估
- 批准号:
78443 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Collaborative R&D
Low temperature single crystal GaN films for energy efficient power transistors
用于节能功率晶体管的低温单晶 GaN 薄膜
- 批准号:
517917-2017 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Low temperature single crystal GaN films for energy efficient power transistors
用于节能功率晶体管的低温单晶 GaN 薄膜
- 批准号:
517917-2017 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Low temperature single crystal GaN films for energy efficient power transistors
用于节能功率晶体管的低温单晶 GaN 薄膜
- 批准号:
517917-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
CAREER: A New GaN-based Unit Cell for Highly Efficient Integrated Power Conversion
事业:用于高效集成功率转换的新型 GaN 基单元
- 批准号:
1719219 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: A New GaN-based Unit Cell for Highly Efficient Integrated Power Conversion
事业:用于高效集成功率转换的新型 GaN 基单元
- 批准号:
1454320 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
GaN HEMT transistor modeling and application to highly efficient and linear amplifier designs
GaN HEMT 晶体管建模及其在高效线性放大器设计中的应用
- 批准号:
365291-2008 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Strategic Projects - Group