Vertical GaN-on-Si membrane power transistors: Efficient power electronics for mass-market applications (VertiGaN)`
垂直硅基氮化镓薄膜功率晶体管:面向大众市场应用的高效电力电子器件 (VertiGaN)`
基本信息
- 批准号:EP/X014924/1
- 负责人:
- 金额:$ 41.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to realize transformative vertical gallium nitride-on-silicon (GaN-on-Si) transistors with breakdown voltage in excess of 1200 V. Power electronics is essential in applications including power distribution and transportation, with inefficiency of power electronic systems estimated to account for 20% of global carbon emissions. Furthermore, emerging low-carbon technologies, including electric vehicles and renewable energy generation, require power electronic devices with significant improvements over existing Si based solutions. GaN is a wide bandgap semiconductor alternative to Si, with superior power electronic material properties. Commercially-available lateral GaN transistors show good power performance, but are generally unsuitable for applications >1000 V due to high on resistance and large chip area. Vertical GaN transistors (where current flows into the plane of the chip, rather than along the surface) offer a step-increase in efficiency and power density over Si-based devices currently dominant in power electronics at voltages exceeding 1000 V. Large-scale commercialisation of vertical GaN devices is currently inhibited by the requirement for expensive and unsustainable GaN bulk substrates. Transfer to sustainable Si substrates as proposed here, with a cost reduction of >1000x, requires management of associated material defects, to be achieved in this work through of implementation of novel device structures and optimisation of material growth processes. Demonstration of vertical GaN on Si transistors with breakdown voltage of >1200 V (i.e. voltage at which device failure occurs), improved from <600 V in previous attempts, will enable exploitation of the outstanding GaN material properties in emerging mass market applications at >1000 V, unlocking new applications and enabling reduced carbon emissions in next-generation power electronic systems including electric vehicles and power distribution. Breakdown voltage in vertical GaN-on-Si transistors will be increased through improvement of material quality in the active device drift region. The novel structure will use an epitaxially-embedded n+GaN drain contact layer to facilitate a drain-recessed membrane device architecture, eliminating low-quality material from the active device region. In parallel, optimisation of epitaxial growth techniques will produce GaN-on-Si material with increased total thickness and a reduction in both dislocation density and background impurity levels. Drain-recessed GaN-on-Si membrane structures will then be integrated with finFET device topologies, shown to withstand operation voltages >1200 V in GaN-on-GaN, resulting in transistors with enhanced off-state blocking and on-state electron transport characteristics. The development workplan, in close collaboration and with strong support by industry, will enable both a thorough exploration of the underlying physics determining vertical breakdown in GaN-on-Si and improvements in device performance toward that required for large-scale commercialisation. Comprehensive failure analysis via reliability/stability testing and multiphysics modelling will provide further understanding of the GaN-on-Si material system and commercial potential.Technology demonstrators will be optimally positioned for integration with next-generation manufacturing chains and testing systems, ensuing maximum commercial impact. This will be achieved through regular consultation with the Project Steering Committee, consisting of UK-based manufacturers of power electronic materials, devices and systems, as well as academics and a prominent UK government policy influencer. The use of a Design Kit to promote the benefits of the technology to system designers and manufacturers will ensure maximum uptake and identification of additional application areas, toward achieving wide-scale use of GaN devices and an associated reduction in carbon emissions from inefficiency of power electronics.
该项目旨在实现击穿电压超过1200V的变革性垂直氮化镓(GaN-on-Si)晶体管。电力电子在配电和运输等应用中是必不可少的,电力电子系统的低效估计占全球碳排放的20%。此外,新兴的低碳技术,包括电动汽车和可再生能源发电,需要比现有的硅基解决方案有显著改进的电力电子器件。GaN是一种替代硅的宽禁带半导体材料,具有优异的电力电子材料性能。商业上可用的横向GaN晶体管具有良好的功率性能,但由于导通电阻高和芯片面积大,通常不适合>;1000V的应用。垂直GaN晶体管(电流流入芯片平面,而不是沿表面)在超过1000V的电压下,提供了比目前电力电子中占主导地位的硅基器件更高的效率和功率密度。目前,由于对昂贵且不可持续的GaN体基衬底的需求,垂直GaN器件的大规模商业化受到限制。这里提出的向可持续硅衬底转移,成本降低1000倍,需要通过实施新的器件结构和优化材料生长过程来实现对相关材料缺陷的管理。对击穿电压为>;1200 V(即发生器件故障时的电压)的垂直GaN on Si晶体管的演示(比之前的尝试中的<;600 V有所改进),将能够在>;1000 V的新兴大众市场应用中利用出色的GaN材料特性,开启新的应用,并在包括电动汽车和配电在内的下一代电力电子系统中减少碳排放。通过改善有源器件漂移区的材料质量,可以提高垂直GaN-on-Si晶体管的击穿电压。这种新颖的结构将使用外延嵌入的n+GaN漏接触层来促进漏凹式薄膜器件架构,从而消除有源器件区域中的低质量材料。同时,外延生长技术的优化将产生总厚度增加、位错密度和背景杂质水平降低的GaN-on-Si材料。然后,漏凹式GaN-on-Si薄膜结构将与FinFET器件拓扑集成,可承受GaN-on-GaN中的操作电压>;1200V,从而产生具有增强的关态阻断和导通电子传输特性的晶体管。在密切合作和业界的大力支持下,开发工作计划将使人们能够彻底探索决定GaN-on-Si垂直击穿的潜在物理因素,并将器件性能提高到大规模商业化所需的水平。通过可靠性/稳定性测试和多物理模型进行的全面故障分析将进一步了解硅基GaN材料系统和商业潜力。技术示范者将处于与下一代制造链和测试系统集成的最佳位置,从而实现最大的商业影响。这将通过与项目指导委员会定期磋商来实现,该委员会由总部设在英国的电力电子材料、设备和系统制造商以及学者和一位著名的英国政府政策影响者组成。使用设计套件向系统设计者和制造商宣传该技术的好处,将确保最大限度地吸收和识别更多的应用领域,从而实现GaN器件的广泛使用,并相关地减少电力电子低效造成的碳排放。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Smith其他文献
Exploring Design Directions for Wearable Privacy
探索可穿戴隐私的设计方向
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Katharina Krombholz;Adrian Dabrowski;Matthew Smith;E. Weippl - 通讯作者:
E. Weippl
MYELOID NEOPLASIA Disease evolution and outcomes in familial AML with germline CEBPA mutations
骨髓瘤 具有种系 CEBPA 突变的家族性 AML 的疾病演变和结果
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. Tawana;Jun Wang;Aline Renneville;Csaba Bödör;R. Hills;C. Loveday;Aleksandar Savic;F. W. Delft;Jennifer Treleaven;Panayiotis Georgiades;E. Uglow;N. Asou;N. Uike;M. Debeljak;J. Jazbec;Philip Ancliff;R. Gale;Xavier Thomas;V. Mialou;K. Döhner;Lars Bullinger;B. Mueller;Thomas Pabst;Matthias Stelljes;B. Schlegelberger;Eva Wozniak;S. Iqbal;J. Okosun;S. Araf;Anne;Felicia B Lauridsen;Bo T. Porse;Claus Nerlov;Carolyn Owen;I. Dokal;J. Gribben;Matthew Smith;Claude Preudhomme;C. Chelala;J. Cavenagh;Jude Fitzgibbon - 通讯作者:
Jude Fitzgibbon
Initial Biphasic Fractional Anisotropy Response to Blast-Induced Mild Traumatic Brain Injury in a Mouse Model
小鼠模型中爆炸引起的轻度创伤性脑损伤的初始双相分数各向异性反应
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.2
- 作者:
P. Venkatasubramanian;J. Piña;Kiran Mathews;P. Rigby;Matthew Smith;J. Duckworth;A. Wyrwicz;Joachim Spiess - 通讯作者:
Joachim Spiess
A smart-gentry based software system for secret program execution
一种基于智能绅士的秘密程序执行软件系统
- DOI:
10.5220/0003445802380244 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Michael Brenner;J. Wiebelitz;G. Voigt;Matthew Smith - 通讯作者:
Matthew Smith
Molecular testing of gastrointestinal tumours
胃肠道肿瘤的分子检测
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Evans;Matthew Smith;B. O’Sullivan;P. Tanière - 通讯作者:
P. Tanière
Matthew Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Smith', 18)}}的其他基金
Collaborative Research: MRA: Distributions of Macrofungi: Quantifying Ecosystem and Climate Drivers of Fungal Reproduction
合作研究:MRA:大型真菌的分布:量化真菌繁殖的生态系统和气候驱动因素
- 批准号:
2106123 - 财政年份:2022
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
SBIR Phase II: High thermal conductivity continuous fiber reinforced 3D printing materials
SBIR第二期:高导热连续纤维增强3D打印材料
- 批准号:
2129734 - 财政年份:2021
- 资助金额:
$ 41.89万 - 项目类别:
Cooperative Agreement
Collaborative Research: Defining the Scope and Consequences of Ectomycorrhizal Fungal Control on Forest Organic Matter Decomposition
合作研究:确定外生菌根真菌控制森林有机物分解的范围和后果
- 批准号:
2019658 - 财政年份:2020
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
Collaborative Research:NCS-FO:Volitional modulation of neural activity in the visual cortex
合作研究:NCS-FO:视觉皮层神经活动的意志调节
- 批准号:
1954107 - 财政年份:2019
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
STTR Phase II: Connected low-power wearable technology that provides personalized thermal comfort in offices
STTR 第二阶段:互联低功耗可穿戴技术,为办公室提供个性化的热舒适度
- 批准号:
1831178 - 财政年份:2018
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
Collaborative Research:NCS-FO:Volitional modulation of neural activity in the visual cortex
合作研究:NCS-FO:视觉皮层神经活动的意志调节
- 批准号:
1734901 - 财政年份:2017
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
STTR Phase I: Wearable technology that provides real-time comfort data to smart buildings and personalized comfort to occupants
STTR 第一阶段:可穿戴技术,为智能建筑提供实时舒适度数据,并为居住者提供个性化舒适度
- 批准号:
1622892 - 财政年份:2016
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
EAGER/RUI: One-Step, Programed Alignment of Liquid Crystal Elastomers by Guest Host Interactions
EAGER/RUI:通过客主交互对液晶弹性体进行一步式、程序化排列
- 批准号:
1649403 - 财政年份:2016
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
Digitization TCN: Collaborative: The Microfungi Collections Consortium: A Networked Approach to Digitizing Small Fungi with Large Impacts on the Function and Health of Ecosystems
数字化 TCN:协作:微型真菌收藏联盟:对对生态系统功能和健康产生重大影响的小型真菌进行数字化的网络方法
- 批准号:
1502763 - 财政年份:2015
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
Symbiotic ectomycorrhizal fungi in southern South America: macroecology and evolutionary history from community to landscape scale
南美洲南部的共生外生菌根真菌:从群落到景观尺度的宏观生态学和进化史
- 批准号:
1354802 - 财政年份:2014
- 资助金额:
$ 41.89万 - 项目类别:
Continuing Grant
相似国自然基金
大尺寸 Si 基 GaN 材料外延及功率器件开发关键技术
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
GaN-Si(100)单片异质集成反相器关键技术研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
Si/石墨烯异质衬底上GaN基紫外探测器的缺陷控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于LPCVD Si3N4双层叠栅结构的GaN MISHEMT栅可靠性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于场制固化及电荷俘获的低损耗高线性Si基GaN增强型射频功率器件研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
增强型GaN-on-Si MIS-HEMT功率器件场控能带机理与新技术
- 批准号:62004046
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于Si衬底GaN基多量子阱的多功能μ-LED阵列研究
- 批准号:61904086
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Si图形衬底上非极性/半极性GaN材料外延生长及物性研究
- 批准号:61874108
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
基于二维石墨烯缓冲层的Si(100)衬底单晶GaN材料生长研究
- 批准号:61804004
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Si基GaN增强型功率开关器件阈值电压调控机理与新结构
- 批准号:61674024
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Si基板上GaN縦型パワーデバイスの低抵抗および高耐圧化に関する研究
硅衬底低阻高击穿GaN垂直功率器件研究
- 批准号:
23K26158 - 财政年份:2024
- 资助金额:
$ 41.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Si基板上GaN縦型パワーデバイスの低抵抗および高耐圧化に関する研究
硅衬底低阻高击穿GaN垂直功率器件研究
- 批准号:
23H01464 - 财政年份:2023
- 资助金额:
$ 41.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Enhancing GaN-on-Si high electron mobility transistor technology for high frequency and high power applications
职业:增强用于高频和高功率应用的硅基氮化镓高电子迁移率晶体管技术
- 批准号:
2239302 - 财政年份:2023
- 资助金额:
$ 41.89万 - 项目类别:
Continuing Grant
Spray Pyrolysis Synthesized Self-biased Hexagonal Ferrite Thin Film on GaN, AlN, Si Substrates for Millimeter-wave Devices
用于毫米波器件的 GaN、AlN、Si 衬底上喷雾热解合成自偏置六方铁氧体薄膜
- 批准号:
1808147 - 财政年份:2018
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
Monolithically Integrated High-Power GaN Devices and Si CMOS Circuits for High Frequency and High Power Converter
用于高频和高功率转换器的单片集成高功率 GaN 器件和 Si CMOS 电路
- 批准号:
1711030 - 财政年份:2017
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
Correlation between deep-level defects and turn-on switching characteristics in AlGaN/GaN hetero-structures grown on Si substrates
Si 衬底上生长的 AlGaN/GaN 异质结构中深能级缺陷与导通开关特性之间的相关性
- 批准号:
16K06276 - 财政年份:2016
- 资助金额:
$ 41.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STTR Phase I: Differential-Mode High-Frequency GaN-on-Si PV Microinverter
STTR 第一阶段:差模高频硅基氮化镓光伏微型逆变器
- 批准号:
1448181 - 财政年份:2015
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
Integration of Si-based MEMS and GaN-based light emitting devices on Si(111) by low-temperature growth technique
通过低温生长技术在 Si(111) 上集成硅基 MEMS 和氮化镓基发光器件
- 批准号:
26870108 - 财政年份:2014
- 资助金额:
$ 41.89万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
GOALI: Strained Layer Heterostructures for GaN-on-Si Epitaxy
目标:用于 GaN-on-Si 外延的应变层异质结构
- 批准号:
1410765 - 财政年份:2014
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
To demonstrate the feasibility of producing low cost, high intensity LEDs using Anvil’s stress relief IP to grow high quality GaN on 3C-SiC on large diameter Si substrates.
演示使用 Anvil 的应力消除 IP 在大直径 Si 基板上生长高质量 3C-SiC 上的 GaN 来生产低成本、高强度 LED 的可行性。
- 批准号:
131706 - 财政年份:2014
- 资助金额:
$ 41.89万 - 项目类别:
Feasibility Studies