How do Rif1 and SAF-A remodel chromatin to ensure effective DNA repair?
Rif1 和 SAF-A 如何重塑染色质以确保有效的 DNA 修复?
基本信息
- 批准号:1806189
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our genomes are constantly damaged, each cell suffering upwards of 30,000 DNA breaks or lesions every day. Repair must occur in the context of chromatin, the nucleoprotein assembly that packages DNA within the nucleus. Regulated changes in chromatin structure are important for effective repair.The protein Rif1 has emerged as critical to control DNA repair. Rif1 suppresses inappropriate homologous recombination, ensuring repair of double-stranded DNA breaks by the direct end-joining pathway. Rif1 is also implicated in organising chromatin into correctly sized loop domains. The molecular mechanism through which Rif1 controls DNA repair and chromatin organisation is however still obscure. We recently discovered that Rif1 is a 'Protein Phosphatase 1-targeting subunit', binding Protein Phosphatase 1 (PP1) to direct it to dephosphorylate specific substrates. This discovery raises the possibility that Rif1 acts in DNA repair and chromatin organisation by mediating dephosphorylation of chromatin components. In a proteomic screen for proteins showing increased phosphorylation upon Rif1-PP1 depletion we identified chromosome scaffold protein SAF-A (Scaffold Attachment Factor A; also called HNRNPU). Professor Nick Gilbert's lab in Edinburgh showed that SAF-A controls chromatin compaction and domain organisation. SAF-A is recruited to damage sites and its depletion causes DNA repair problems. This PhD project will test the hypothesis that Rif1-PP1 directs DNA repair through chromosome remodelling, in particular by dephosphorylating chromosome scaffold component SAF-A to control chromatin compaction. Project addresses three specific questions:1. How does Rif1 affect recruitment of repair components and resolution of DNA damage? To examine effects of Rif1 on recruitment of chromatin components and subsequent repair, the endonuclease I Ppo1 will be expressed in immortalised human 293 cells to inflict controlled DNA damage (induced I-Ppo1 cuts around 20 sites in the human genome). Using flow cytometry and chromatin immunoprecipitation, we will monitor recruitment of chromatin-modulating repair components to damage sites, in control cells and cells depleted for Rif1, SAF-A, or both. DNA repair will be simultaneously monitored by PCR analysis across break sites. This section examines Rif1-mediated recruitment of chromatin modulators in relation to repair effectiveness. 2. Does Rif1 direct repair by regulating chromatin compaction activity of SAF-A? Following DNA damage chromatin first condenses to enable checkpoint activation then is subsequently extended for DNA repair to occur. The student will test whether Rif1 dephosphorylates SAF-A after damage to mediate these changes, evaluating how chromatin compaction and conformation are affected if Rif1 and SAF-A are absent. We will test the effect of a Rif1 mutant that cannot bind PP1, and of SAF-A mutated at the phosphosites most increased by Rif1/PP1 depletion). Mutants will be generated using CRISPR, and chromatin compaction will be monitored using sucrose density sedimentation followed by deep sequencing, and by fluorescence in situ hybridisation. 3. Are Rif1 and SAF-A essential to establish chromosome domain organisation and chromatin compaction? We will also test whether Rif1 regulates higher-order chromatin organisation by SAF-A under undisturbed, non-DNA-damaging conditions, an intriguing question as determinants of chromatin domain structure and higher order chromosome organisation in normal cells remain elusive. Informed by Parts 1 and 2, the student will test this hypothesis by examining the effect of Rif1 and SAF-A on chromatin organisation in embryonic stem cells. Overall this project provides an outstanding training opportunity for an ambitious student to build on biochemical studies by understanding how DNA damage repair operates in the in vivo chromatin context, and to investigate establishment of normal chromatin organisation during development.
我们的基因组不断受损,每个细胞每天遭受超过30,000次DNA断裂或损伤。修复必须发生在染色质的背景下,染色质是将DNA包装在细胞核内的核蛋白组装体。染色质结构的调节性变化对于有效的修复是重要的。蛋白质Rif 1已经成为控制DNA修复的关键。Rif 1抑制不适当的同源重组,确保通过直接末端连接途径修复双链DNA断裂。Rif 1还参与将染色质组织成正确大小的环结构域。然而,Rif 1控制DNA修复和染色质组织的分子机制仍然不清楚。我们最近发现,Rif 1是一个“蛋白磷酸酶1靶向亚基”,结合蛋白磷酸酶1(PP 1),指导它去磷酸化特定底物。这一发现提出了Rif 1通过介导染色质组分的去磷酸化作用于DNA修复和染色质组织的可能性。在蛋白质组学筛选中,我们鉴定了染色体支架蛋白SAF-A(支架附着因子A;也称为HNRNPU),所述蛋白质在Rif 1-PP 1耗尽后显示出增加的磷酸化。尼克吉尔伯特教授在爱丁堡的实验室表明,SAF-A控制染色质压缩和结构域组织。SAF-A被募集到损伤位点,其耗尽导致DNA修复问题。这个博士项目将测试Rif 1-PP 1通过染色体重塑指导DNA修复的假设,特别是通过去磷酸化染色体支架组件SAF-A来控制染色质压实。该项目解决了三个具体问题:1。Rif 1如何影响修复组件的募集和DNA损伤的解决?为了检查Rif 1对染色质组分的募集和随后的修复的影响,将在永生化的人293细胞中表达内切核酸酶I Ppo 1,以施加受控的DNA损伤(诱导的I-Ppo 1切割人类基因组中的约20个位点)。使用流式细胞术和染色质免疫沉淀,我们将监测招募染色质调节修复组件的损害网站,在控制细胞和细胞耗尽的Rif 1,SAF-A,或两者兼而有之。将通过PCR分析跨断裂位点同时监测DNA修复。本节研究了Rif 1介导的染色质调节剂募集与修复有效性的关系。2. Rif 1是否通过调节SAF-A的染色质致密化活性来指导修复?DNA损伤后,染色质首先浓缩以激活检查点,然后延伸以进行DNA修复。学生将测试Rif 1是否在损伤后使SAF-A去磷酸化以介导这些变化,评估如果Rif 1和SAF-A不存在,染色质致密化和构象如何受到影响。我们将测试不能结合PP 1的Rif 1突变体和在Rif 1/PP 1耗尽最增加的磷酸位点处突变的SAF-A的作用。将使用CRISPR产生突变体,并且将使用蔗糖密度沉降随后深度测序和荧光原位杂交来监测染色质压实。3. Rif 1和SAF-A对建立染色体结构域组织和染色质致密化至关重要吗?我们还将测试Rif 1是否在不受干扰的非DNA损伤条件下通过SAF-A调节高阶染色质组织,这是一个有趣的问题,因为正常细胞中染色质结构域结构和高阶染色体组织的决定因素仍然难以捉摸。通过第1部分和第2部分,学生将通过检查Rif 1和SAF-A对胚胎干细胞染色质组织的影响来验证这一假设。总体而言,该项目为雄心勃勃的学生提供了一个出色的培训机会,通过了解DNA损伤修复如何在体内染色质背景下运作,并研究在发育过程中正常染色质组织的建立,以生物化学研究为基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
- 批准号:LZ23H280001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
- 批准号:92259102
- 批准年份:2022
- 资助金额:60.00 万元
- 项目类别:重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
- 批准号:81770762
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
- 批准号:81773040
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
- 批准号:81771104
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
- 批准号:31600259
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
- 批准号:40702026
- 批准年份:2007
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Fellowship
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
- 批准号:
EP/Z000610/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
- 批准号:
MR/X034100/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334517 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
- 批准号:
2341354 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
- 批准号:
2244690 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Do root microbiomes control seagrass response to environmental stress?
根部微生物组是否控制海草对环境压力的反应?
- 批准号:
DP240100566 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
- 批准号:
MR/Y022947/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Do oxidative breaks accumulate at gene regulatory regions in disease?
疾病中的基因调控区域是否会积累氧化断裂?
- 批准号:
MR/Y000021/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Why Do Breeders Tolerate Non-breeders In Animal Societies?
为什么动物社会中的饲养者容忍非饲养者?
- 批准号:
2333286 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant