Kinase signalling in neuronal membrane trafficking

神经元膜运输中的激酶信号传导

基本信息

  • 批准号:
    1809605
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Development and maintenance of neuronal structure requires numerous signalling mechanisms acting in concert. Neuronal dendrites are input receiving regions which contain postsynaptic specializations contacting incoming axons. Membrane trafficking from intracellular compartments is shown to be essential for maintenance of dendritic spines, sites for more than ninety percent of excitatory synapses in mammalian brain. Synaptic structures can be modified by turn-over of transmembrane proteins. Our lab studies how kinases regulate cellular processes to affect neuronal structure and function. Malfunctioning and loss of dopaminergic neurons in the midbrain substantia nigra region causes Parkinson's disease (PD), a common neurodegenerative disorder. Cellular mechanisms that lead to the degeneration remain an active research area. Important clues originated from clinical genetic studies which implicated several genes in PD. Among these are two kinases: cyclin G-associated kinase (GAK) and Leucine Rich Repeat Kinase 2 (LRRK2). GAK is identified as a PD risk factor via multiple genome wide association studies [1]. GAK is ubiquitously expressed in many tissues including the brain. It is present in Golgi and is known to regulate clathrin mediated endocytosis. LRRK2 mutations cause familial forms of Parkinson's disease and polymorphisms in LRRK2 are risk factors for non-familial PD [2]. LRRK2 is a large multi-domain protein which has been associated with several cellular processes; yet its cellular role still remains unclear. LRRK2's downstream phosphorylation targets have been an intense area of study in the past decades. Recently a membrane trafficking regulator Rab8 is shown to be a LRRK2 substrate [3]. Interestingly, an unbiased biochemical screen identified GAK as a physical interactor of LRRK2 [4].We confirmed that GAK and LRRK2 can associate, indicating that they may be parts of a protein complex. Whether or not GAK and LRRK2 participate in a common cellular mechanism such as membrane trafficking or how they may affect each other's function are unknown. We will use knockout and knock-in mouse models of LRRK2 and GAK, confocal imaging and biochemistry methods to address these questions. With this project we hope to gain understanding of the cellular pathways that are regulated by GAK and LRRK2, which may raise possibilities about pathological changes in PD.Our specific aims are:1) Determine the protein domains required for GAK- LRRK2 association and test if GAK and LRRK2 associate endogenously in mouse brain. 2) Determine if GAK and LRRK2 regulate each other's localization in neurons. We generated GAK conditional knockout mice in which GAK is deleted in excitatory neurons in the cortex and hippocampus. LRRK2 knockout mice, LRRK2 kinase dead knock-in mice and LRRK2 G2019S knock-in mice, with increased activity, are available from GSK partners. 3) Test if GAK and LRRK2 could regulate functional output of each other. We will use phospho-specific antibodies towards substrates of GAK and LRRK2 and cellular assays in neuronal cultures to investigate this question.Development and maintenance of neuronal structure requires numerous signalling mechanisms acting in concert. Neuronal dendrites are input receiving regions which contain postsynaptic specializations contacting incoming axons. Membrane trafficking from intracellular compartments is shown to be essential for maintenance of dendritic spines, sites for more than ninety percent of excitatory synapses in mammalian brain. Synaptic structures can be modified by turn-over of transmembrane proteins. Our lab studies how kinases regulate cellular processes to affect neuronal structure and function. Malfunctioning and loss of dopaminergic neurons in the midbrain substantia nigra region causes Parkinson's disease (PD), a common neurodegenerative disorder. Cellular mechanisms that lead to the degeneration remain an active research area. Important clues
神经元结构的发育和维持需要许多信号传导机制协同作用。神经元树突是输入接受区域,其包含接触传入轴突的突触后特化。从细胞内室的膜运输被证明是必不可少的树突棘,网站超过百分之九十的兴奋性突触在哺乳动物大脑的维护。突触结构可以通过跨膜蛋白的翻转来修饰。我们的实验室研究激酶如何调节细胞过程以影响神经元的结构和功能。中脑黑质区域中多巴胺能神经元的功能障碍和丧失导致帕金森病(PD),一种常见的神经退行性疾病。导致退变的细胞机制仍然是一个活跃的研究领域。重要的线索来自临床遗传学研究,涉及PD的几个基因。其中有两种激酶:细胞周期蛋白G相关激酶(GAK)和富含亮氨酸重复序列激酶2(LRRK 2)。GAK通过多个全基因组关联研究被确定为PD风险因素[1]。GAK在包括脑在内的许多组织中普遍表达。它存在于高尔基体中,并且已知调节网格蛋白介导的内吞作用。LRRK 2突变导致家族性帕金森病,LRRK 2多态性是非家族性PD的风险因素[2]。LRRK 2是一个大的多结构域蛋白,与几个细胞过程相关;但其细胞作用仍不清楚。LRRK 2的下游磷酸化靶点在过去几十年中一直是一个激烈的研究领域。最近,膜运输调节剂Rab 8被证明是LRRK 2底物[3]。有趣的是,无偏的生化筛选将GAK鉴定为LRRK 2的物理相互作用物[4]。我们证实GAK和LRRK 2可以缔合,表明它们可能是蛋白质复合物的一部分。GAK和LRRK 2是否参与共同的细胞机制,如膜运输或它们如何影响彼此的功能尚不清楚。我们将使用LRRK 2和GAK的敲除和敲入小鼠模型,共聚焦成像和生物化学方法来解决这些问题。本研究的主要目的是:1)确定GAK与LRRK 2结合所需的蛋白结构域,并检测GAK与LRRK 2在小鼠脑内是否存在内源性结合。2)确定GAK和LRRK 2是否调节彼此在神经元中的定位。我们产生了GAK条件性敲除小鼠,其中GAK在皮质和海马的兴奋性神经元中缺失。活性增加的LRRK 2敲除小鼠、LRRK 2激酶死亡敲入小鼠和LRRK 2 G2019 S敲入小鼠可从GSK合作伙伴获得。3)测试GAK和LRRK 2是否可以相互调节功能输出。我们将使用磷酸化特异性抗体对基板的GAK和LRRK 2和细胞测定在神经元culture.Development和维护的神经元结构需要许多信号机制的一致行动,以调查这个问题。神经元树突是输入接受区域,其包含接触传入轴突的突触后特化。从细胞内室的膜运输被证明是必不可少的树突棘,网站超过百分之九十的兴奋性突触在哺乳动物大脑的维护。突触结构可以通过跨膜蛋白的翻转来修饰。我们的实验室研究激酶如何调节细胞过程以影响神经元的结构和功能。中脑黑质区域中多巴胺能神经元的功能障碍和丧失导致帕金森病(PD),一种常见的神经退行性疾病。导致退变的细胞机制仍然是一个活跃的研究领域。重要线索

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

富含半胱氨酸分泌亚家族3蛋白与钙释放通道的相互作用
  • 批准号:
    30870508
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
信号转导分子PAK4相互作用蛋白质的筛选
  • 批准号:
    30370736
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Receptor Tyrosine Kinase Transactivation in Neuronal Signalling, Stress, and Survival
受体酪氨酸激酶反式激活对神经元信号传导、应激和生存的影响
  • 批准号:
    RGPIN-2019-04177
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Inflammatory signalling in the pain pathway: age-dependent differences in the response of neuronal ensembles to pain promoting molecules
疼痛通路中的炎症信号传导:神经元群对疼痛促进分子的反应存在年龄依赖性差异
  • 批准号:
    2747583
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Tools to decipher neuronal signalling and computation
破译神经信号和计算的工具
  • 批准号:
    RGPIN-2020-06361
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Tools to decipher neuronal signalling and computation
破译神经信号和计算的工具
  • 批准号:
    RGPIN-2020-06361
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Regulation of the time-sensitive period in neuronal circuit development by NTRK2/TrkB signalling.
NTRK2/TrkB 信号传导调节神经元回路发育的时间敏感期。
  • 批准号:
    MR/W005166/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Netrin-1 receptor "deleted in colorectal cancer" (DCC) signalosome in axonal development
Netrin-1 受体“在结直肠癌中缺失”(DCC) 轴突发育中的信号体
  • 批准号:
    456496
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Identifying and modulating pro-regenerative micro-RNA signalling networks to promote neuronal recovery following axonal injury
识别和调节促再生 micro-RNA 信号网络以促进轴突损伤后神经元的恢复
  • 批准号:
    457481
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Receptor Tyrosine Kinase Transactivation in Neuronal Signalling, Stress, and Survival
受体酪氨酸激酶反式激活对神经元信号传导、应激和生存的影响
  • 批准号:
    RGPIN-2019-04177
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
An improved C. elegans model of Alzheimer's Disease to monitor neuronal signalling activity
改进的阿尔茨海默氏病线虫模型,用于监测神经元信号活动
  • 批准号:
    NC/T002018/1
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Examining the Mechanisms of Interleukin-6 Signalling in SH-SY5Y Neuronal Cells
检查 SH-SY5Y 神经元细胞中白细胞介素 6 信号传导的机制
  • 批准号:
    553947-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了