Matterwave interferometry for inertial sensing

用于惯性传感的 Matterwave 干涉测量

基本信息

  • 批准号:
    1811645
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Navigation is a difficult problem, especially when access to the skies is restricted. Currently, most international travel by plane and ship relies on location through the GPS (Global Positioning Signal) signal, which is provided by a fleet of 24 satellites in orbit around Earth. If this signal is lost then, much like ancient sailors without sight of the stars, then the traveller very quickly loses track of their position. Given that GPS is owned and operated by one country, the USA, who can switch it off at any time and, furthermore, that it is open to hacking, it is clear that a means to have completely independent knowledge of location is required. The aim of this project is generate purely passive methods of tracking position with better than state-of-the-art sensitivity by the using of newly developed tools from atomic physics that harness the state-of-the-art in precision measurement. Atoms are strongly affected by inertial forces, the "pushing" effect that is felt when suddenly accelerating. This effect is already used to measure gravity, where measuring the time it takes for an object to fall a certain distance allows us to detect the force exerted by the mass of the Earth. Huge advances have been made in laser physics the last decades that allow measurement of positions with sub-atomic resolution through optical interferometry, which allows for similar increases in sensitivity to measurement of forces. The solution then is to use the well-known laws of Newton to integrate back the instantaneous velocity and position. However, the sensitivity required is extremely strict - an error of 10-5 m/s2 (one millionth of the acceleration due to gravity) results in a drift in position of 100 m in just one hour, and of approximately 50 km in one day. The solution is to use a quantum technology; the matter-wave interferometer. The ability to cool atoms down to only a few micronK using laser light has enabled some of the most spectacular developments in atomic physics in recent years. One of the most profound is the direct observation of the de Broglie wave nature of atoms and the subsequent achievement of a Bose-Einstein condensate (BEC), a state of matter where a cloud of atoms coalesce into a single quantum state [1]. The possibility of using interference of these coherent matter waves offers new levels of potential accuracy for measurement devices. A particular application of interest is that of inertial sensing with applications in quantum-based autonomous navigation devices. The Experimental Quantum Optics and Photonics group within the Physics Department at the University of Strathclyde have been leading in research in this area and have demonstrated new different methods for atom interferometry. In fact, members of this group produced the first BEC in the UK also the first in Scotland. This project will build on existing research at Strathclyde University in atom interferometry with coherent matter waves and work on ring-shaped guided traps to explore the possibilities for developing miniaturised technology for rotation sensing. Central for this will be integration with Strathclyde's microfabrication technology [2], which was recently developed for miniaturisation of the optical set-up for laser cooling setup.The goal of the project will be the demonstration of a matter-wave Sagnac interferometer in a ring-trap geometry. The system of a coherent matter wave confined in a ring trap is formally equivalent to the coherent optical field (laser) in a ring cavity known from the ring laser gyro [3]. The interesting difference, though, is that the sensitivity to phase rotation scales with the relativistic energy of the particle/wave involved. For atoms that is about eleven orders of magnitude larger than light. The project will build upon Strathclyde's unique experience in generating a toroidal, smooth trapping potential, where atomic waves can propagate in opposite directions (4,5).
导航是一个难题,尤其是在进入天空受到限制的情况下。目前,大多数飞机和船只的国际旅行依赖于GPS(全球定位信号)信号的定位,这是由地球轨道上的24颗卫星组成的舰队提供的。如果失去了这个信号,就像古代水手看不见星星一样,旅行者很快就会失去自己的位置。鉴于全球定位系统是由一个国家拥有和操作的,美国可以随时关闭它,而且它很容易被黑客攻击,很明显,需要一种完全独立的位置知识的手段。该项目的目的是利用原子物理学新开发的工具,利用最先进的精密测量技术,产生纯被动的位置跟踪方法,其灵敏度优于最先进的技术。原子受到惯性力的强烈影响,即突然加速时感受到的“推动”效应。这种效应已经被用于测量重力,通过测量物体下落到一定距离所需的时间,我们可以探测到地球质量施加的力。在过去的几十年里,激光物理学取得了巨大的进步,可以通过光学干涉测量法以亚原子分辨率测量位置,这使得测量力的灵敏度也有了类似的提高。解决的办法就是用著名的牛顿定律把瞬时速度和位置积分回来。然而,对灵敏度的要求是非常严格的——10-5米/秒的误差(重力加速度的百万分之一)会导致在一个小时内漂移100米,一天内漂移大约50公里。解决方案是使用量子技术;物质波干涉仪。利用激光将原子冷却到几微米的能力使得近年来原子物理学取得了一些最引人注目的进展。其中最深刻的是对原子的德布罗意波性质的直接观察,以及随后的玻色-爱因斯坦凝聚(BEC)的成就,这是一种物质状态,其中原子云合并成一个单一的量子态[1]。利用这些相干物质波的干涉的可能性为测量设备提供了新的潜在精度水平。我们感兴趣的一个特殊应用是惯性传感在量子自主导航设备中的应用。斯特拉斯克莱德大学物理系的实验量子光学和光子学小组在这一领域的研究一直处于领先地位,并展示了不同的原子干涉测量新方法。事实上,这个小组的成员制作了英国第一个BEC,也是苏格兰第一个BEC。该项目将建立在斯特拉斯克莱德大学现有的相干物质波原子干涉测量研究的基础上,并研究环形引导陷阱,以探索开发用于旋转传感的小型化技术的可能性。其核心将与Strathclyde的微制造技术[2]集成,该技术是最近为激光冷却装置的光学装置小型化而开发的。该项目的目标是演示环形陷阱几何形状的物质波Sagnac干涉仪。环形阱中的相干物质波系统在形式上相当于环形激光陀螺[3]中环形腔中的相干光场(激光)。然而,有趣的区别在于,对相位旋转的敏感性与所涉及的粒子/波的相对论能量有关。对于原子来说,它比光大11个数量级。该项目将建立在斯特拉斯克莱德在产生环形、平滑捕获势方面的独特经验的基础上,原子波可以在相反的方向上传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于seismic interferometry的海上勘探数据重建方法研究
  • 批准号:
    40904030
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
  • 批准号:
    2332534
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
  • 批准号:
    2333941
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interferometry to measure atoms
测量原子的干涉​​测量法
  • 批准号:
    10072884
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Atom Interferometry with Ultracold Strontium Atoms
超冷锶原子的原子干涉测量
  • 批准号:
    2885950
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Microwave Atom Chip Traps for Atom Interferometry
用于原子干涉测量的微波原子芯片陷阱
  • 批准号:
    2308767
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Simultaneous measurement of diameters and film thickness in foam via fiber-optic interference spectral probe
通过光纤干涉光谱探头同时测量泡沫中的直径和薄膜厚度
  • 批准号:
    23K17727
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
  • 批准号:
    10667971
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Biophysical, Structural, and Cellular Dissection of COPI-Dependent Retrograde Trafficking Using a Coronavirus Toolkit
使用冠状病毒工具包对 COPI 依赖性逆行贩运进行生物物理、结构和细胞解剖
  • 批准号:
    10646999
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Inducing Off-pathway Assembly of HIV Gag Polyprotein with Computationally Designed Peptides
用计算设计的肽诱导 HIV Gag 多蛋白的非途径组装
  • 批准号:
    10724495
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Synthetic Scavenger Medical Countermeasures for Fentanyl
芬太尼的合成清除剂医疗对策
  • 批准号:
    10726539
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了