Building an Analogue of Majorana Theory for Mathieu Moonshine

为 Mathieu Moonshine 建立马约拉纳理论的模拟

基本信息

  • 批准号:
    1832459
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

In 2010 Eguchi, Ooguri and Tachikawa [4] observed that the elliptic genus of a K3 surface has a natural decomposition in terms of dimensions of irreducible representations of the Mathieu group M24, a sporadic simple group with a great wealth of structure and applications.This intriguing observation, called Mathieu Moonshine, is very reminiscent of a similar phenomenon usually referred to as Monstrous Moonshine, namely that the famous J-function has an expansion in terms of characters of the Virasoro algebra whose coefficients are dimensions of Monster group representations, as was first noted by McKay and Thompson. In the context of Monstrous Moonshine, this observation was eventually explained by the construction of the so-called Moonshine module [5], a vertex algebra acted on by the Monster group and used by Borcherds [1] to prove the conjecture.One key observation that provided convincing evidence for the existence of such a vector space came from considering the so-called McKay-Thompson series. These are obtained from the J-function upon replacing the expansion coefficients by their corresponding characters. The Mathieu Moonshine was pushed further - indeed, made well defined - by the work of Cheng [2], Gaberdiel, Hohenegger & Volpato [6, 7] and Eguchi & Hikami [3], who calculated the so-called twining genera. These are the analogues of the McKay-Thompson series, involving the insertion of an M24 group element into the elliptic genus and possess the appropriate modular properties.From this information one can deduce the decomposition of all Fourier coefficients in terms of M24 representations and the conjecture was recently proved abstractly by Gannon [8]. On the way other observations have been made, especially in the context of theoretical physics, but a full conceptual understanding of the phenomenon is still missing.In the context of Monstrous Moonshine, the so-called Majorana Theory, whose basic concepts were introduced in 2009 by A. A. Ivanov [9], has proved to be an original tool to examine the subalgebras of the Griess algebra, a real commutative non-associative algebra that has the Monster group as its auto-morphism group. Since then, the construction of Majorana representations of various finite groups has given non-trivial information about the Monstrous Moonshine and the project is to find a similar theory coming from the Mathieu Moonshine.References[1] R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109, 405-444 (1992).[2] M.C.N. Cheng, K3 Surfaces, N=4 Dyons, and the Mathieu group M24, Commun. Number Theory Phys. 4 (2010), 623 [arXiv:1005.5415].[3] T. Eguchi, K. Hikami, Note on twisted elliptic genus of K3 surface, Phys. Lett. B694 446455 (2011) [arXiv:1008.4924][4] T. Eguchi, H. Ooguri and Y. Tachikawa, Notes on the K3 Surface and the Mathieu group M24, Exper. Math. 20, 91 (2011).[5] I. Frenkel, J. Lepowsky, A. Meurman Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press (1988).[6] M. R. Gaberdiel, S. Hohenegger, R. Volpato Mathieu twining characters for K3, JHEP 09 (2010) 058; [arXiv:1006.0221].[7] M. R. Gaberdiel, S. Hohenegger, R. Volpato Mathieu Moonshine in the elliptic genus of K3, JHEP 10 (2010) 062; [arXiv:1008.3778v3].[8] T. Gannon, Much ado about Mathieu, Adv. Math., vol. 301, pp. 322358, 2016.[9] A. A. Ivanov, The Monster Group and Majorana Involutions, volume 176 of Cambridge Tracts in Mathematics, Cambridge Univ. Press, Cambridge, 2009.
2010年,Euchi,Ooguri和Tchikawa[4]观察到K3曲面的椭圆亏格在Mathieu群M24的不可约表示的维度方面具有自然分解,Mathieu群M24是一个零星的简单群,具有丰富的结构和应用。这一有趣的观察称为Mathieu Moonlight,非常令人想起通常被称为Monstous Moonlight的类似现象,即著名的J-函数在Virasoro代数的特征方面具有扩张,其系数是Monster群表示的维度,这是McKay和Thompson最先注意到的。在怪兽月光的背景下,这种观察最终被所谓的月光模[5]的构造所解释,月光模是由怪兽群体作用的一个顶点代数,Borcherds[1]用它来证明这一猜想。一个关键的观察结果为这种向量空间的存在提供了令人信服的证据,这来自于对所谓的McKay-Thompson级数的研究。它们是在用相应的字符替换展开系数后从J函数中获得的。由计算所谓的缠绕属的郑[2],Gaberdiel,Hohenegger&Volpato[6,7]和Eguchi&Hikami[3]的工作进一步推进了Mathieu Moonlight[3]。这些是McKay-Thompson级数的类似,涉及到在椭圆亏格中插入一个M24群元,并且具有适当的模性质.从这些信息可以推导出所有傅里叶系数在M24表示下的分解,最近Gannon[8]抽象地证明了这一猜想.在其他方面,特别是在理论物理的背景下,人们已经做出了其他的观察,但对这一现象的完整的概念理解仍然是缺失的。在怪物月光的背景下,所谓的Majorana理论,其基本概念于2009年由A.A.Ivanov[9]引入,已被证明是研究Griess代数的子代数的原始工具,Griess代数是一种真正的交换非结合代数,其自同构群为Monster群。从那时起,各种有限群的Majorana表示的构造给出了关于Monstine Moonshine的非平凡信息,该项目的目的是从Mathieu Moonshine找到类似的理论。参考文献[1]R.E.Borcherds,Monstous Moonlight和Monstous Lie超代数,发明了。数学课。109,405-444(1992).[2]M.C.N.Cheng,K3表面,N=4 Dyons,和Mathieu群M24,Commun.数论物理。4(2010),623[arxiv:1005.5415].[3]T.Eguchi,K.Hikami,关于K3曲面扭曲椭圆亏格的注记,Phys.让我们来吧。B694 446455(2011年)[arxiv:1008.4924][4]T.Eguchi,H.Ooguri和Y.Tchikawa,关于K3表面的注释和Mathieu群M24,Exper.数学课。20,91(2011年).[5]I.Frenkel,J.Lepowsky,A.Meurman Vertex算子代数和怪物,纯数学和应用数学,第134,学术出版社(1988年).[6]M.R.Gaberdiel,S.Hohenegger,R.Volpato Mathieu为K3,JHEP 09(2010)058;[arxiv:1006.0221].[7]M.R.Gaberdiel,S.Hohenegger,R.Volpato Mathieu Moonlight在K3的椭圆亏格,JHEP 10(2010)062;[8][8]T.Gannon,《关于Mathieu的大闹数学》,第301卷,322358页,2016年。[9]A.伊万诺夫,The Monster Group and Majorana Inolutions,剑桥大学数学剑桥丛书第176卷。出版社,剑桥,2009年。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
  • 批准号:
    EP/X041581/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
  • 批准号:
    EP/X041395/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Analogue and Digital Forms of Resistance and Solidarity among Moroccan Women Agricultural Workers in Southern Spain
西班牙南部摩洛哥女性农业工人的模拟和数字形式的抵抗和团结
  • 批准号:
    2886848
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Control of structure and magnetism of nanographene analogue constructed from BN containing protection groups
由含保护基团的 BN 构建的纳米石墨烯类似物的结构和磁性控制
  • 批准号:
    23K19256
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
ProAtom: Programmable Atom Arrays for Analogue Optimisation Solutions
ProAtom:用于模拟优化解决方案的可编程原子阵列
  • 批准号:
    10075092
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
Offshore renewable energy (ORE) foundations on rock seabeds: Advancing design through analogue testing and modelling
岩石海底的海上可再生能源 (ORE) 基础:通过模拟测试和建模推进设计
  • 批准号:
    2871946
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Obesity complicating type 1 diabetes in young people: Physiology and Impact of GLP-1 analogue anti-obesity treatment on cardiometabolic risk factors
年轻人肥胖并发 1 型糖尿病:GLP-1 类似物抗肥胖治疗的生理学和对心脏代谢危险因素的影响
  • 批准号:
    10736906
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a multifunctional biomaterial patch for buccal delivery of peptide-analogue treatments
开发用于颊部递送肽类似物治疗的多功能生物材料贴片
  • 批准号:
    10061746
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了