Exploring the modelling of behaviour and context using deep learning under constrained computing platforms with applications to Digital Health

在受限计算平台下使用深度学习探索行为和情境建模及其在数字健康中的应用

基本信息

  • 批准号:
    1892895
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

This project falls within the ESPRC Artificial Intelligence Technologies research area. The central question of the study is the effective modelling of consumer health to determine user behaviour and context using data-mining methods.Today's forms of mobile sensing, ranging from phone apps to wearable devices, typically monitor relatively simple dimensions of behaviour and context; for instance, sleep duration and step counts. However, advances in areas like deep learning are demonstrating computational models are possible for much more complex phenomena (e.g., user emotion, social interactions), at a level of robustness that they can be useful in real-world environments. Simultaneously, advances in the computational power of constrained devices (e.g., low-power GPUs, small-form-factor hardware accelerators) are increasing the sophistication of algorithms that are feasible to execute on these platforms.Data mining has widespread applications as a useful process for extracting meaningful information from large datasets. In particular, its application in the modelling of health data on mobile devices has generated considerable interest. Such interest is chiefly motivated by breakthroughs in both software and hardware, namely deep learning methods and device computational power.This research will involve an examination of current models and a subsequent software innovation to produce efficient models suited for constrained computing platforms. Current usage of data mining models often involves a trade-off between performance and efficiency. A prudent research question would be to tackle algorithmic redundancies and innovate for methods with relevance to constrained computing platforms such as wearables.The main objectives to be achieved through this project include, but are not limited to, the following:- modelling sensor data from constrained platforms using deep learning principles andalgorithms such that the interpretation of user behaviour and context reaches greater breadth and accuracy;- developing new system resource-efficient deep learning methods suited to constrained computing platforms (such as wearable devices and embedded platforms);- investigating potential efficiency gains in deep learning methods through software/algorithmic innovation or novel hardware/processor directions.The novelty of the research lies on the potential solutions that might result from experimenting with varying machine learning architectures. Finally, this project also aligns to EPSRC's strategy in delivering intelligent technologies and systems. The project also adheres to broader Cross-ICT priorities since it seeks to look at real healthcare data, such that the project is ICT-centric but not necessarily solely related to ICT.
该项目属于ESPRC人工智能技术研究领域的福尔斯。这项研究的核心问题是,如何对消费者健康状况进行有效建模,从而利用数据挖掘方法确定用户行为和环境。从手机应用到可穿戴设备,如今的移动的传感形式通常只监测相对简单的行为和环境维度,例如睡眠时间和步数。然而,像深度学习这样的领域的进步表明,计算模型可以用于更复杂的现象(例如,用户情感、社会交互),在一定的鲁棒性水平上,它们在现实世界环境中是有用的。同时,受限设备的计算能力的进步(例如,低功耗GPU、小型硬件加速器)正在增加可在这些平台上执行的算法的复杂性。数据挖掘作为从大型数据集中提取有意义信息的有用过程具有广泛的应用。特别是,它在移动的设备上的健康数据建模中的应用引起了相当大的兴趣。这种兴趣主要来自软件和硬件的突破,即深度学习方法和设备计算能力。这项研究将涉及对当前模型的检查和随后的软件创新,以产生适用于受限计算平台的高效模型。目前使用的数据挖掘模型往往涉及性能和效率之间的权衡。一个谨慎的研究问题是解决算法冗余问题,并创新与可穿戴设备等受限计算平台相关的方法。通过该项目实现的主要目标包括但不限于以下内容:-使用深度学习原理和算法对受限平台的传感器数据进行建模,以便对用户行为和上下文的解释达到更大的广度和准确性;- 开发新的系统资源高效的深度学习方法,适用于受限的计算平台(如可穿戴设备和嵌入式平台);- 通过软件/算法创新或新型硬件研究深度学习方法的潜在效率提升;该研究的新奇在于可能通过试验不同的机器学习架构而产生的潜在解决方案。最后,该项目还符合EPSRC在提供智能技术和系统方面的战略。该项目还坚持更广泛的跨信通技术优先事项,因为它寻求研究真实的医疗保健数据,因此该项目以信通技术为中心,但不一定只与信通技术有关。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inference of Big-Five Personality Using Large-scale Networked Mobile and Appliance Data
使用大规模网络移动和家电数据推断大五人格
  • DOI:
    10.1145/3210240.3210823
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tong C
  • 通讯作者:
    Tong C
Tracking Fatigue and Health State in Multiple Sclerosis Patients Using Connnected Wellness Devices
使用互联健康设备跟踪多发性硬化症患者的疲劳和健康状况
Are Accelerometers for Activity Recognition a Dead-end?
Deterministic Binary Filters for Convolutional Neural Networks
  • DOI:
    10.24963/ijcai.2018/380
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. W. Tseng;S. Bhattacharya;J. Fernández-Marqués;Milad Alizadeh;C. Tong;N. Lane
  • 通讯作者:
    V. W. Tseng;S. Bhattacharya;J. Fernández-Marqués;Milad Alizadeh;C. Tong;N. Lane
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Epidemiological modelling of behavioural impact on Mpox mitigation strategies
行为对 Mpox 缓解策略影响的流行病学模型
  • 批准号:
    481271
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Mechanical Behaviour of Artificially Frozen Ground: Experimental Observations and Modelling
人工冻土的力学行为:实验观测和建模
  • 批准号:
    2886419
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the effect of mutations on cell behaviour in blood disorders through mathematical modelling and computational analysis
通过数学建模和计算分析了解突变对血液疾病细胞行为的影响
  • 批准号:
    2887435
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Computational modelling of team foraging to understand human behaviour and cognition
团队觅食的计算模型以了解人类行为和认知
  • 批准号:
    2887185
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding and modelling the impact of consumer purchasing behaviour on the global supply chains' decisions in adapting anti-slavery practices
了解消费者购买行为对全球供应链采取反奴隶制做法的决策的影响并对其进行建模
  • 批准号:
    2887334
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Investigation of Debris Flow behaviour and interaction with mitigation structures using physical and numerical modelling
使用物理和数值模型研究泥石流行为以及与缓解结构的相互作用
  • 批准号:
    2882193
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Mathematical modelling of hydrogen isotope transport and retention behaviour during nuclear fusion plant-scale operations
核聚变工厂规模运行期间氢同位素传输和保留行为的数学模型
  • 批准号:
    2906882
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Characterization and modelling of the behaviour of advanced woven composite material
先进编织复合材料行为的表征和建模
  • 批准号:
    RGPIN-2018-05537
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Characterization and modelling of pre-gelation/gelation behaviour of polymer composites
聚合物复合材料预凝胶/凝胶行为的表征和建模
  • 批准号:
    RGPIN-2018-04749
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Modelling human behaviour response to public policy and its impact on infectious disease spread - case studies using AI/ML, data science, game theory and optimization
模拟人类对公共政策的行为反应及其对传染病传播的影响 - 使用人工智能/机器学习、数据科学、博弈论和优化进行案例研究
  • 批准号:
    572512-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了