CORE--STATISTICAL DATA ENCLAVE

核心——统计数据飞地

基本信息

  • 批准号:
    6486607
  • 负责人:
  • 金额:
    $ 13.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-15 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

In Core E we will perform two major tasks. One task is the development of new analytic models for dealing with longitudinal data from both national and local-area studies of elderly and oldest-old populations. The second task is the investigation of statistical models for masking crucial variables in a data set to prevent individuals from being identified from data sets-yet generate data sets that retain considerable and sufficient detail for multiple research purposes. In fact, on a fundamental mathematical level these two analytic tasks are related-though possibly as inverse problems. In analyzing longitudinal data for human populations the assessments of the age trajectories of health and functional changes are generally "incomplete," i.e., measurements occur at fixed times often several years apart. Thus there is considerable "missing data" on the processes being sampled in most longitudinal observation plans. The data masking problem is the reverse problem, i.e., what data has to be "masked" or made "missing" to prevent individuals from being identified. Thus, the measurement can either be removed or made "fuzzier" by reporting less detailed measurement intervals or by adding random noise to the variable. We will start by creating models with the basics of the Missing Information principle, the super-population theory of sampling (appropriate for modeling processes, the E-M algorithm and models of partly observed stochastic processes, and apply those models and concepts to different types of data (i.e., survey reports, medical cost data, genetic or DNA data) to see how to best proceed in a..) Analysis, and b.) Masking, with each. It is anticipated, that apart from the standard approaches to assessing confidentiality (e.g., as practiced by NCHS or RTI; see Core C), that multivariate procedures will be explored for data masking that are based on stochastic process models, and that can use mathematical and statistical principles to approximate multivariate distributions to the degree desired.
在核心E中,我们将执行两项主要任务。一项任务是开发新的分析模型,用于处理来自国家和地方对老年人和高龄人口的研究的纵向数据。第二项任务是调查统计模型,以掩盖数据集中的关键变量,以防止个人从数据集中被识别-但生成的数据集保留了大量和足够的细节,用于多种研究目的。事实上,在基本的数学层面上,这两个分析任务是相关的--尽管可能是逆问题。在分析人类人口的纵向数据时,对健康和功能变化的年龄轨迹的评估通常是“不完整的”,即测量在固定的时间进行,通常相隔几年。因此,在大多数纵向观测计划中,抽样过程有相当大的“缺失数据”。数据屏蔽问题是相反的问题,即必须对哪些数据进行“屏蔽”或使其“丢失”,以防止个人被识别。因此,可以通过报告不太详细的测量间隔或通过向变量添加随机噪声来去除测量或使测量变得更“模糊”。首先,我们将使用缺失信息原理、抽样的超总体理论(适用于建模过程、E-M算法和部分观察到的随机过程的模型)的基本知识来创建模型,并将这些模型和概念应用于不同类型的数据(即调查报告、医疗成本数据、遗传或DNA数据),以了解如何在...分析,以及b.)每个人都戴着面具。预计,除了评估机密性的标准方法(例如,NCHS或RTI的做法;见核心C)外,还将探索以随机过程模型为基础的数据掩蔽的多变量程序,并可使用数学和统计原理以所需的程度逼近多变量分布。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

P.J. ERIC STALLARD其他文献

P.J. ERIC STALLARD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('P.J. ERIC STALLARD', 18)}}的其他基金

Migrating the National Long Term Care Survey to the MedRIC Health and Aging Data Enclave
将国家长期护理调查迁移到 MedRIC 健康和老龄化数据飞地
  • 批准号:
    10827579
  • 财政年份:
    2020
  • 资助金额:
    $ 13.78万
  • 项目类别:
Genetic and Non-Genetic Modulators of Morbidity/Disability Compression in a Large Population-Based Study of Cognitive and Physical Impairment with Emphasis on Alzheimer's Disease and Related Dementias
在一项基于大规模人群的认知和身体损伤研究中,发病率/残疾压缩的遗传和非遗传调节剂,重点是阿尔茨海默氏病和相关痴呆症
  • 批准号:
    10608996
  • 财政年份:
    2020
  • 资助金额:
    $ 13.78万
  • 项目类别:
Genetic and Non-Genetic Modulators of Morbidity/Disability Compression in a Large Population-Based Study of Cognitive and Physical Impairment with Emphasis on Alzheimer's Disease and Related Dementias
在一项基于大规模人群的认知和身体损伤研究中,发病率/残疾压缩的遗传和非遗传调节剂,重点是阿尔茨海默氏病和相关痴呆症
  • 批准号:
    10378773
  • 财政年份:
    2020
  • 资助金额:
    $ 13.78万
  • 项目类别:
Genetic and Non-Genetic Modulators of Morbidity/Disability Compression in a Large Population-Based Study of Cognitive and Physical Impairment with Emphasis on Alzheimer's Disease and Related Dementias
在一项基于大规模人群的认知和身体损伤研究中,发病率/残疾压缩的遗传和非遗传调节剂,重点是阿尔茨海默氏病和相关痴呆症
  • 批准号:
    9913288
  • 财政年份:
    2020
  • 资助金额:
    $ 13.78万
  • 项目类别:
Genetic Modulations of Morbidity Compression: A Population-Based Study
发病率压缩的基因调节:一项基于人群的研究
  • 批准号:
    9349627
  • 财政年份:
    2016
  • 资助金额:
    $ 13.78万
  • 项目类别:
Archiving and Dissemination of NLTCS Medicaid Data
NLTCS 医疗补助数据的存档和传播
  • 批准号:
    8370893
  • 财政年份:
    2012
  • 资助金额:
    $ 13.78万
  • 项目类别:
CORE--STATISTICAL DATA ENCLAVE
核心——统计数据飞地
  • 批准号:
    6664370
  • 财政年份:
    2002
  • 资助金额:
    $ 13.78万
  • 项目类别:
Core--Forecasts and Changes in Health and Illness Costs
核心——健康和疾病成本的预测和变化
  • 批准号:
    6664382
  • 财政年份:
    2002
  • 资助金额:
    $ 13.78万
  • 项目类别:
Core--Forecasts and Changes in Health and Illness Costs
核心——健康和疾病成本的预测和变化
  • 批准号:
    6453008
  • 财政年份:
    2001
  • 资助金额:
    $ 13.78万
  • 项目类别:
CORE--STATISTICAL DATA ENCLAVE
核心——统计数据飞地
  • 批准号:
    6352569
  • 财政年份:
    2000
  • 资助金额:
    $ 13.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了