Inverse Dynamics Using Instrumented Assistive Technology
使用仪表辅助技术的逆动力学
基本信息
- 批准号:6550091
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-12 至 2002-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): In 1990, there were over 1.69 million noninstitutionalized walker users in the United States (85% over the age of 65 years). A walker is used to provide support, reduce weight bearing on the lower limbs, and therefore to minimize the likelihood of falls. There were, however, over 118.000 accidents (>75% involving females) reported between 1987 and 1992 which involved walker use and which required emergency room treatment (mostly hip fractures and upper body trauma).
Biomechanical movement analysis is a key tool for understanding walker-assisted gait, and for providing quantitative objective measures of performance leading, optimistically, to improvement in walker design and guidance in walker use. Biomechanical analyses that include the kinetics of gait (e.g. force, moments and mechanical energy transfers) may be the most important tools because they help to explain the kinematics, and may reveal the neuromuscular strategy underlying the movement. To date, commercial gait analysis software do not incorporate Assistive devices (like a walker) into the Inverse Dynamics calculations because, in part, instrumented walkers that provide a complete description of the constraint provided by the walker handle do not exist commercially. The instrumented walker manufactured by AMT uses a 6 degree of freedom load cell attached to the handle to record the constraint force provided by the handle (the reaction force at the hand-handle interface). In order to perform an inverse dynamics analysis it is necessary to have 9 variables to define the reaction force completely (e.g. Force Vector (Fx, Fy, Fz), Center of Pressure (CPx, CPy, CPz), and Free Moments (Tx, Ty,Tz))
In Phase I AMTI will add two sets of 8 strain gauges to a new central core on the walker handle to provide signals for two components of the couple applied to the handle. C-Motion will use the eight signals, plus the geometry of the handle, to define completely the constraint force at the hands. C-Motion will develop an algorithm, based on the 6 degree of freedom analysis in its Visual3D software, that uses the 9 signals, and motion capture data of the position and orientation of the walker handles and the subject's hands, to produce a complete inverse dynamics analysis of the upper arms during walker assisted gait.
描述(申请人提供):1990年,美国有超过169万非机构助行器用户(85%超过65岁)。助行器被用来提供支撑,减轻对下肢的负重,从而将跌倒的可能性降到最低。然而,在1987年至1992年期间,报告了118.000多起事故(75%涉及女性),这些事故涉及助行器的使用,需要急诊室治疗(主要是髋部骨折和上半身创伤)。
生物力学运动分析是理解步行器辅助步态的关键工具,也是提供性能的量化客观测量的重要工具,乐观地指导步行器的设计和使用。包括步态动力学(如力、力矩和机械能传递)在内的生物力学分析可能是最重要的工具,因为它们有助于解释运动学,并可能揭示运动背后的神经肌肉策略。到目前为止,商业步态分析软件没有将辅助设备(如步行器)纳入逆动力学计算,这在一定程度上是因为,商业上不存在提供步行器手柄所提供约束的完整描述的仪表式步行器。AMT制造的仪表式步行器使用安装在手柄上的6自由度称重传感器来记录手柄提供的约束力(手柄界面处的反作用力)。为了执行逆动力学分析,需要有9个变量来完全定义反作用力(例如,力向量(Fx,Fy,Fz)、压力中心(Cpx,Cpy,Cpz)和自由力矩(Tx,Ty,Tz))
在第一阶段,AMTI将在助行器手柄上的新中心核心上增加两套8个应变计,为应用于手柄的两个组件提供信号。C-Motion将使用八个信号加上手柄的几何形状来完全定义手部的约束力。C-Motion将开发一种算法,基于其Visual3D软件中的6个自由度分析,使用9个信号,以及步行器手柄和受试者手的位置和方向的运动捕捉数据,生成步行器辅助步态期间上臂的完整逆动力学分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
W. Scott Selbie其他文献
Co-contraction uses dual control of agonist-antagonist muscles to improve motor performance
共同收缩利用主动肌和拮抗肌的双重控制来提高运动表现
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Christopher M Saliba;M. Rainbow;W. Scott Selbie;Kevin J Deluzio;Stephen H. Scott - 通讯作者:
Stephen H. Scott
In vivo lumbo-sacral forces and moments during constant speed running at different stride lengths
不同步长恒速跑步时的体内腰骶力和力矩
- DOI:
10.1080/02640410802298235 - 发表时间:
2008 - 期刊:
- 影响因子:3.4
- 作者:
J. Seay;W. Scott Selbie;J. Hamill - 通讯作者:
J. Hamill
Commentary on "Modelling knee flexion effects on joint power absorption and adduction moment".
“模拟膝关节屈曲对关节功率吸收和内收力矩的影响”的评论。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ross H Miller;S. Brandon;W. Scott Selbie;K. Deluzio - 通讯作者:
K. Deluzio
W. Scott Selbie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('W. Scott Selbie', 18)}}的其他基金
Software for improved accuracy and rapid tracking of kinematics from dynamic Xray
用于提高动态 X 射线运动学精度和快速跟踪的软件
- 批准号:
9036935 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Software for improved accuracy and rapid tracking of kinematics from dynamic Xray
用于提高动态 X 射线运动学精度和快速跟踪的软件
- 批准号:
8592857 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
A Probabilistic Pose Estimation Algorithm for 3D Motion Capture Data
3D 运动捕捉数据的概率姿势估计算法
- 批准号:
8200961 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Analytical Tools for Optimizing Neurorehabilitation of Gait
优化步态神经康复的分析工具
- 批准号:
7161059 - 财政年份:2006
- 资助金额:
$ 10万 - 项目类别:
VIRTUAL MUSCLE: A HIERARCHICAL MATHEMATICAL MUSCLE MODEL
虚拟肌肉:分层数学肌肉模型
- 批准号:
6142075 - 财政年份:2000
- 资助金额:
$ 10万 - 项目类别:
MOVEMENT VISUALIZATION AND ANALYSIS FOR REHABILITATION
康复运动可视化和分析
- 批准号:
6388050 - 财政年份:1999
- 资助金额:
$ 10万 - 项目类别:
MOVEMENT VISUALIZATION AND ANALYSIS FOR REHABILITATION
康复运动可视化和分析
- 批准号:
6134794 - 财政年份:1999
- 资助金额:
$ 10万 - 项目类别: