A Probabilistic Pose Estimation Algorithm for 3D Motion Capture Data
3D 运动捕捉数据的概率姿势估计算法
基本信息
- 批准号:8200961
- 负责人:
- 金额:$ 12.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsApplications GrantsBiomechanicsClinicalClinical ServicesClinical assessmentsComputer softwareDataData SetDevelopmentEffectivenessElectromagneticsEstimation TechniquesFluoroscopyGenerationsGoldGrantHandHealth Care CostsHeartIndividualKineticsKnowledgeLaboratoriesLinkMagnetismMapsMeasuresMethodsModelingMorphologic artifactsMotionMovementNoiseOpticsOutcomePatientsPhasePositioning AttributeProbabilityProcessProductivityPublishingQuality of lifeRehabilitation ResearchRelative (related person)Research PersonnelSkeletonSkinSolutionsStreamSystemTechniquesTechnologyTestingTimeTreatment outcomeUncertaintyUnited States National Institutes of HealthUniversitiesVisionbasebonecase-by-case basisdata managementdesigndisabilityflexibilityfunctional disabilityimprovedjoint mobilizationkinematicsoptical sensorresearch and developmentsensorsimulationskeletalsoft tissuetool
项目摘要
DESCRIPTION (provided by applicant): A major challenge facing rehabilitation research is to measure relationships between impairments, functional limitations, and disabilities. Biomechanical analyses are a key tool for establishing these relationships by providing quantitative objective measures of patient status and treatment outcomes. At the heart of many biomechanical analyses is estimation of the pose (position and orientation) of a multi-segment model based on recording of 3D motion data using sensors (optical, electro-magnetic, or inertial). Visual3D, the most advanced clinical biomechanics analysis software available commercially for 3D motion capture data, contains solutions for the estimation of pose from 3D sensor data that have been tested in laboratories throughout the world, and are used on a daily basis for clinical assessment. Researchers have come to rely on Visual3D's capabilities. C-Motion is proposing a collaborative research and development effort to get new pose estimation techniques into the hands of researchers. The algorithms from Phase I and the enhancements in Phase II will be included in Visual3D. At the core of Visual3D's functionality are flexible algorithms for identifying a mapping from 3D motion capture sensors to the 3D pose of a segmented skeletal model. The principle assumption of the Visual3D pose estimation algorithms (and other commercial biomechanics software) is that sensors move rigidly with the body segments to which they are attached. It is accepted, however, that sensors attached to the skin move relative to the underlying skeleton and that this Soft Tissue Artifact is challenging to quantify or model because it is often systematic but varies on a case by case basis. This artifact is a serious challenge to the relevance of non-invasive clinical motion analyses. The current pose estimation algorithms were not designed to incorporate models of soft tissue artifact. Uncertainty in data (e.g. sensor noise and artifact) cannot be addressed directly using current discriminative methods, but may be addressed by casting the Pose Estimation problem in the general framework of probabilistic inference (Todorov, 2007). In this framework, the pose and any prior knowledge about the pose are encoded probabilistically, and the "artifacts and noise" are captured by a generative model, which defines the conditional probability of the data given the pose. In Phase I we will implement and test a kinematics-based probabilistic algorithm for computing the pose (position and orientation) of a subject using Bayesian inference as proposed by Dr. Todorov. The results will be compared to a set of biplanar cinefluoroscopy data and 3D motion capture data recorded simultaneously by our collaborator Dr. Scott Tashman (Biodynamics Laboratory at the University of Pittsburgh), which we will treat as our "gold standard" for bone motion. The overall project is very ambitious, so in Phase I we are attempting an important subset of the overall algorithm to demonstrate feasibility of this approach, and to provide evidence that we are capable of tackling the even more ambitious Phase II project.
PUBLIC HEALTH RELEVANCE: There is a tremendous need for improved rehabilitation research and clinical services to lower individual health care costs and improve productivity and quality of life. Biomechanical analysis is a key tool for understanding the relationships between impairments, functional limitations, and disabilities by providing quantitative, objective measures of patient status and treatment outcomes. This project is designed to apply probabilistic algorithms developed in the field of machine vision to make a new generation of biomechanical techniques available commercially, which will enable researchers to improve movement analysis dramatically and ultimately patient outcomes.
描述(由申请人提供):康复研究面临的一个主要挑战是衡量损伤,功能限制和残疾之间的关系。生物力学分析是通过提供患者状态和治疗结果的定量客观测量来建立这些关系的关键工具。许多生物力学分析的核心是基于使用传感器(光学、电磁或惯性)记录的3D运动数据来估计多段模型的姿态(位置和方向)。Visual 3D是市面上最先进的临床生物力学分析软件,用于3D运动捕捉数据,包含用于从3D传感器数据估计姿势的解决方案,这些解决方案已在世界各地的实验室中进行了测试,并每天用于临床评估。研究人员开始依赖Visual 3D的功能。C-Motion正在提出一项合作研究和开发工作,以使研究人员掌握新的姿态估计技术。第一阶段的算法和第二阶段的增强功能将包含在Visual 3D中。Visual 3D功能的核心是灵活的算法,用于识别从3D运动捕捉传感器到分段骨骼模型的3D姿态的映射。Visual 3D姿态估计算法(和其他商业生物力学软件)的主要假设是传感器与它们所连接的身体部分刚性地移动。然而,人们普遍认为,附着在皮肤上的传感器会相对于底层骨骼移动,而且这种软组织伪影的量化或建模具有挑战性,因为它通常是系统性的,但会根据具体情况而有所不同。这种伪影是对无创临床运动分析相关性的严重挑战。当前的姿态估计算法没有被设计为结合软组织伪影的模型。数据中的不确定性(例如传感器噪声和伪影)无法使用当前的判别方法直接解决,但可以通过在概率推理的一般框架中铸造姿势估计问题来解决(Todorov,2007)。在该框架中,姿态和关于姿态的任何先验知识被概率地编码,并且“伪像和噪声”由生成模型捕获,该生成模型定义给定姿态的数据的条件概率。在第一阶段,我们将实施和测试基于运动学的概率算法,用于使用托多罗夫博士提出的贝叶斯推理计算受试者的姿势(位置和方向)。将结果与我们的合作者Scott Tashman博士(匹兹堡大学生物动力学实验室)同时记录的一组双平面电影透视数据和3D运动捕捉数据进行比较,我们将其视为骨运动的“黄金标准”。整个项目非常雄心勃勃,因此在第一阶段,我们正在尝试整个算法的一个重要子集,以证明这种方法的可行性,并提供证据证明我们有能力解决更雄心勃勃的第二阶段项目。
公共卫生相关性:有一个巨大的需求,改善康复研究和临床服务,以降低个人的医疗保健成本,提高生产力和生活质量。生物力学分析是理解损伤、功能限制和残疾之间关系的关键工具,可提供患者状态和治疗结果的定量、客观测量。该项目旨在应用机器视觉领域开发的概率算法,使新一代生物力学技术商业化,这将使研究人员能够显着改善运动分析,并最终改善患者的治疗效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
W. Scott Selbie其他文献
Co-contraction uses dual control of agonist-antagonist muscles to improve motor performance
共同收缩利用主动肌和拮抗肌的双重控制来提高运动表现
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Christopher M Saliba;M. Rainbow;W. Scott Selbie;Kevin J Deluzio;Stephen H. Scott - 通讯作者:
Stephen H. Scott
In vivo lumbo-sacral forces and moments during constant speed running at different stride lengths
不同步长恒速跑步时的体内腰骶力和力矩
- DOI:
10.1080/02640410802298235 - 发表时间:
2008 - 期刊:
- 影响因子:3.4
- 作者:
J. Seay;W. Scott Selbie;J. Hamill - 通讯作者:
J. Hamill
Commentary on "Modelling knee flexion effects on joint power absorption and adduction moment".
“模拟膝关节屈曲对关节功率吸收和内收力矩的影响”的评论。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ross H Miller;S. Brandon;W. Scott Selbie;K. Deluzio - 通讯作者:
K. Deluzio
W. Scott Selbie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('W. Scott Selbie', 18)}}的其他基金
Software for improved accuracy and rapid tracking of kinematics from dynamic Xray
用于提高动态 X 射线运动学精度和快速跟踪的软件
- 批准号:
9036935 - 财政年份:2013
- 资助金额:
$ 12.63万 - 项目类别:
Software for improved accuracy and rapid tracking of kinematics from dynamic Xray
用于提高动态 X 射线运动学精度和快速跟踪的软件
- 批准号:
8592857 - 财政年份:2013
- 资助金额:
$ 12.63万 - 项目类别:
Analytical Tools for Optimizing Neurorehabilitation of Gait
优化步态神经康复的分析工具
- 批准号:
7161059 - 财政年份:2006
- 资助金额:
$ 12.63万 - 项目类别:
Inverse Dynamics Using Instrumented Assistive Technology
使用仪表辅助技术的逆动力学
- 批准号:
6550091 - 财政年份:2002
- 资助金额:
$ 12.63万 - 项目类别:
VIRTUAL MUSCLE: A HIERARCHICAL MATHEMATICAL MUSCLE MODEL
虚拟肌肉:分层数学肌肉模型
- 批准号:
6142075 - 财政年份:2000
- 资助金额:
$ 12.63万 - 项目类别:
MOVEMENT VISUALIZATION AND ANALYSIS FOR REHABILITATION
康复运动可视化和分析
- 批准号:
6388050 - 财政年份:1999
- 资助金额:
$ 12.63万 - 项目类别:
MOVEMENT VISUALIZATION AND ANALYSIS FOR REHABILITATION
康复运动可视化和分析
- 批准号:
6134794 - 财政年份:1999
- 资助金额:
$ 12.63万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 12.63万 - 项目类别:
Research Grant