A New Microbubble Method for Dissolved Air Flotation

溶气气浮微泡新法

基本信息

  • 批准号:
    1938430
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Dissolved air flotation (DAF) is a water treatment process for the separation of particles from water and wastewater (Figure 1). In a DAF facility air is dissolved in the water under high pressure and then released into a basin at ambient pressure (Agarwal, Ng and Liu, 2011). The pressure difference cause air bubble nucleation and growth. Bubble coalescence would take place when they grow to a certain size that allows them to touch each other. Suspended solids in the water would subsequently attach to the bubble-water interface and rise to the top due to buoyancy, thereby separating solids from the liquid. DAF was first recognized as a method of separating particles such as mineral ore in the early 1900s. A US patent was filed in 1905 for a process using pressurised aeration followed by pressure release (Edzwald, 1995). Since then DAF has become established in many fields and is widely used in the water industry. Multiple flotation techniques already exist: dissolved air (pressure) flotation, electro-flotation, dispersed induced air flotation, nozzle flotation, column flotation, centrifugal flotation, jet flotation, cavitation air flotation. The distinguishing feature of DAF is the employment of small scale bubbles, typically 30-100 micrometres in diameter, where extremely small particles have to be separated (Rubio, Souza and Smith, 2002). The most common method for microbubble production uses compression of an air stream to dissolve air into a liquid which in turn becomes supersaturated. This liquid is then depressurised via flow through a nozzle system producing microbubbles via cavitation (Zimmerman et al., 2008). Current research ((Edzwald, 2010) shows that the energy required to generate bubbles via conventional methods (e.g. compressed air) contributes significantly to the operating cost. The hydrodynamics of air-liquid-solid flows especially in high capacity DAF is also far from optimised. The overall aim of this project is to investigate alternative energy efficient microbubble production methods and assess their suitability to high capacity DAF facility. Experimental and computational tools will be used to elucidate the hydrodynamics of the multiphase (gas-liquid-solid) system. Aims:1. Enhancing the energy efficiency and separation performance of DAF by using improved microbubble generation methods.2. Determine efficiency of new method compared to old method (i.e. cost, energy etc.).3. Look at the scale up and implementation of new method in existing treatment facilities.Specific objectives:Computational modelling- Use computational fluid dynamics (CFD) modelling to elucidate the hydrodynamics of existing and improved DAF systems- Couple CFD and MATLAB to solve the reaction and mass transfer characteristics - Use CFD modelling to assess and select the most appropriate operating conditions (e.g. gas and liquid flow rates) for solid separations - USE CFD results to inter- and extrapolate the separation performanceExperimental Work- Characterisation of bubbles, visualisation of flow paths, gas transfers etc.- Lab scale DAF experiments to verify the computational work.- Investigate the removal of different types of contaminants/pathogens.
溶气浮选(DAF)是一种从水和废水中分离颗粒的水处理工艺(图1)。在DAF设施中,空气在高压下溶解在水中,然后在环境压力下释放到盆地中(Agarwal, Ng和Liu, 2011)。压力差导致气泡成核和长大。当它们长到一定的大小,使它们能够相互接触时,就会发生气泡合并。悬浮在水中的固体随后会附着在气泡-水界面上,并由于浮力上升到顶部,从而将固体从液体中分离出来。20世纪初,DAF首次被认为是一种分离矿物矿石等颗粒的方法。1905年,一项美国专利被提交给使用加压曝气的过程,随后是压力释放(Edzwald, 1995)。从那时起,DAF已经在许多领域建立起来,并广泛应用于水工业。多种浮选技术已经存在:溶气(压力)浮选、电浮选、分散诱导气浮选、喷嘴浮选、柱浮选、离心浮选、射流浮选、空化气浮选。DAF的显著特点是采用小尺度气泡,通常直径为30-100微米,其中必须分离极小的颗粒(Rubio, Souza和Smith, 2002)。生产微泡最常见的方法是压缩气流,将空气溶解成液体,使其过饱和。然后,这种液体通过喷嘴系统通过空化产生微气泡进行减压(Zimmerman et al., 2008)。目前的研究(Edzwald, 2010)表明,通过传统方法(如压缩空气)产生气泡所需的能量对运行成本有很大影响。特别是在大容量DAF中,空气-液-固流动的流体动力学也远未优化。该项目的总体目标是研究替代节能微泡生产方法,并评估其对高容量DAF设施的适用性。实验和计算工具将用于阐明多相(气-液-固)系统的流体动力学。目的:1。采用改进的微泡生成方法提高DAF的能源效率和分离性能。确定新方法与旧方法相比的效率(即成本,能源等)。看看新方法在现有处理设施中的规模扩大和实施情况。具体目标:计算建模-使用计算流体动力学(CFD)建模来阐明现有和改进的DAF系统的流体动力学-耦合CFD和MATLAB来解决反应和传质特性-使用CFD建模来评估和选择最合适的操作条件(例如气体和液体流速)用于固体分离-使用CFD结果来相互分析和推断分离性能。流动路径的可视化,气体传输等-实验室规模的DAF实验,以验证计算工作。-调查不同类型污染物/病原体的清除情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Microbubble-ZPDGFRβ/PFD/liposome通过靶向肝星状细胞改善肿瘤微环境抑制肝细胞癌复发转移的作用及机制研究
  • 批准号:
    82272000
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

ERI:Elucidating the Mechanism and Effects of Enhanced Thermal Ablation of Tissues by Microbubble Assisted High Intensity Focused Ultrasound
ERI:阐明微泡辅助高强度聚焦超声增强组织热消融的机制和效果
  • 批准号:
    2301721
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Establishment of Ultrasound Control Technique of Microbubble-Encapsulated Vesicles and Its Medical Applications
微泡囊泡超声控制技术的建立及其医学应用
  • 批准号:
    23H00164
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of Carbon Dioxide Resource Conversion Technology Using Microbubble In-liquid Plasma
利用微气泡液态等离子体开发二氧化碳资源转化技术
  • 批准号:
    23K17065
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Light-based controls of giant temperature gradient on a microbubble surface
基于光的微泡表面巨大温度梯度控制
  • 批准号:
    23H01723
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Treatment of Alzheimer’s Disease using Ultrasound-Targeted Microbubble Cavitation-Mediated Blood Brain Barrier Opening to Facilitate Drug Delivery to the Brain
使用超声靶向微泡空化介导的血脑屏障打开促进药物输送至大脑来治疗阿尔茨海默病
  • 批准号:
    10462037
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Treatment of Alzheimer’s Disease using Ultrasound-Targeted Microbubble Cavitation-Mediated Blood Brain Barrier Opening to Facilitate Drug Delivery to the Brain
使用超声靶向微泡空化介导的血脑屏障打开促进药物输送到大脑来治疗阿尔茨海默病
  • 批准号:
    10710373
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
OPTIMUM (Oxidative Flow Platform Utilising Porous liquids, 3D printing and Microbubble Technology at Almac)
OPTIMUM(Almac 利用多孔液体、3D 打印和微泡技术的氧化流平台)
  • 批准号:
    MR/W001764/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Microbubble resonator dispersion engineering for blue-band soliton comb generation
用于蓝带孤子梳生成的微泡谐振器色散工程
  • 批准号:
    22K14621
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding the vascular physiology after exposure to ultrasound stimulated microbubble oscillations
了解暴露于超声波刺激的微泡振荡后的血管生理学
  • 批准号:
    RGPIN-2018-04233
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Determining the biochemical mechanism of microbubble-mediated vascular permeability
确定微泡介导的血管通透性的生化机制
  • 批准号:
    RGPIN-2018-06505
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了