Physiological Substrates of a Circadian Oscillator

昼夜节律振荡器的生理基础

基本信息

项目摘要

DESCRIPTION (applicant's abstract): Our objective is to understand mechanisms whereby interacting chemical messengers transduce light information from the eye via the retinohypothalamic tract (RHT) to the circadian clock in the suprachiasmatic nucleus (SCN). This process decodes photic information from external light in the context of internal state. Under the present award, we discovered that the chemical signal from the RHT is more complex than previously thought. Pituitary adenyl cyclase-activating peptide (PACAP) and glutamate (Glu) co-localize within terminals of retinal ganglion cells innervating the SCN. We found evidence for functional interaction both in vivo and in vitro: in early night, PACAP potentiated Glu-induced phase delay of SCN rhythms, while in late night it blocked Glu-induced phase advance. Thus, responses to these signals are state-dependent and clock-controlled. How does PACAP interact with Glu to encode light signals at the SCN? What cellular processes integrate combinatorial signaling events to modulate amplitude and direction of phase resetting differentially in early vs. late night? We will evaluate PACAP and Glu actions and interactions during photic signaling in vivo, release from the RHT, signal transduction(s) and consequent molecular events in early vs. late night. Hypotheses to be tested are that: 1) the light signal contains both Glu- and PACAP-ergic components that interact producing graded changes in clock phase, and 2) the clock's responses to PACAP and Glu change between early and late night due to differential effects of clock-gated cAMP/PKA signaling and the state of the molecular clockworks. Multiple indices of change will be measured: rhythms of behavior, oscillation of SCN neuronal activity, and levels/localizations of putative clock elements in rodent models. This multidisciplinary approach will provide insights into classical (Glu) and modulatory (PACAP) neurotransmission, cellular and molecular mechanisms of signal integration, and decision-making processes that alter neuronal state. These are fundamental issues in neuroscience. Signal transduction is a cellular process, and by identifying the relevant neurotransmitters, receptors, second messenger systems and targets, we will be able to understand the causal mechanisms the mediate differential state changes in the clock. This research is basic to understanding integrative brain function. It has applied relevance for strategies in drug chronotherapeutics and will facilitate developing rationally-based therapies for timing disorders, including internal desynchronizations manifested as disordered patterns of sleep, cognitive and autonomic function, neurological impairment in aging and depressive states.
描述(申请人摘要):我们的目标是了解机制

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martha U Gillette其他文献

Martha U Gillette的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martha U Gillette', 18)}}的其他基金

Dynamic Circadian Regulation of the Blood-Brain Interface in a Human Brain-mimicking Microfluid Chip
模拟人脑微流体芯片中血脑界面的动态昼夜节律调节
  • 批准号:
    10318466
  • 财政年份:
    2021
  • 资助金额:
    $ 37.76万
  • 项目类别:
Dynamic Circadian Regulation of the Blood-Brain Interface in a Human Brain-mimicking Microfluid Chip
模拟人脑微流体芯片中血脑界面的动态昼夜节律调节
  • 批准号:
    10912839
  • 财政年份:
    2021
  • 资助金额:
    $ 37.76万
  • 项目类别:
High Resolution Analysis of miR125b in Dendrites via Microfluidic Devices
通过微流体装置对树突中的 miR125b 进行高分辨率分析
  • 批准号:
    8571230
  • 财政年份:
    2013
  • 资助金额:
    $ 37.76万
  • 项目类别:
Nano-Scale Processes of Dendrogenesis
树突发生的纳米级过程
  • 批准号:
    7882602
  • 财政年份:
    2009
  • 资助金额:
    $ 37.76万
  • 项目类别:
Nano-Scale Processes of Dendrogenesis
树突发生的纳米级过程
  • 批准号:
    7740046
  • 财政年份:
    2009
  • 资助金额:
    $ 37.76万
  • 项目类别:
Neuropeptidomics of Clock-to-Clock Coupling
时钟与时钟耦合的神经肽组学
  • 批准号:
    7736240
  • 财政年份:
    2009
  • 资助金额:
    $ 37.76万
  • 项目类别:
Neuropeptidomics of Clock-to-Clock Coupling
时钟与时钟耦合的神经肽组学
  • 批准号:
    7924746
  • 财政年份:
    2009
  • 资助金额:
    $ 37.76万
  • 项目类别:
Actin-based Neuronal State Changes
基于肌动蛋白的神经元状态变化
  • 批准号:
    7321299
  • 财政年份:
    2007
  • 资助金额:
    $ 37.76万
  • 项目类别:
Actin-based Neuronal State Changes
基于肌动蛋白的神经元状态变化
  • 批准号:
    7488953
  • 财政年份:
    2007
  • 资助金额:
    $ 37.76万
  • 项目类别:
Actin-based Neuronal State Changes
基于肌动蛋白的神经元状态变化
  • 批准号:
    7683239
  • 财政年份:
    2007
  • 资助金额:
    $ 37.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了