The Painlevé paradox and geometric singular perturbation theory

Painlevé 悖论和几何奇异微扰理论

基本信息

  • 批准号:
    1939397
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

When a piece of chalk is dragged across a blackboard, it is a matter of common, and usually unpleasant, experience that the chalk can judder and sometimes emit a high-pitched squeal. Such behaviour is related to the Painlevé paradox (Painlevé 1905). Physically, the frictional torque at the point of contact is high enough to overcome the resistance of the rigid surface, implying that the chalk should enter the blackboard. Since this cannot happen, the chalk jumps.The recent discovery that the paradox can occur in robotic manipulators, where it effects controllability, together with some excellent experimental evidence (Zhao et al. 2008), have provoked strong modern interest in this old problem.This project aims to deal with some outstanding issues relating to the Painlevé paradox. For a slender rod slipping on a rough surface, indeterminacy or inconsistency in the rigid body equations represent failures in modelling. The assumed rigidity must be relaxed. It has been shown by Hogan & Kristiansen (2016) that behaviour like that seen physically (e.g. instantaneous jumping of the chalk away from the board) arises when there is some compliance at the point of contact. This compliance (or regularization) is extremely small, and the resulting equations lead to a slow-fast system for which there is a wealth of existing mathematical theory. However, to capture the piecewise-smooth (PWS) limit of the rigid body, we need geometric singular perturbation theory, in which there have been many advances. The recently developed "blowup method" (Krupa & Szmolyan 2001) enables the identification of scales associated with the regularization, in a framework amendable to classical reduction methods in dynamical system theory. One outstanding problem that this project will aim to resolve was posed by Dupont & Yamajako (1997) of a rod between two rough surfaces. The aim is to build upon the framework in Hogan & Kristiansen (2016), where the underlying modelling assumptions of rigid body dynamics are relaxed and the PWS system is replaced by a smooth one through regularization. Then blowup will be used in the analysis of the problem.
当粉笔在黑板上拖拽时,粉笔会抖动,有时会发出尖锐的尖叫声,这是一种常见的、通常令人不快的经历。这种行为与painlev<e:1>悖论(painlev<e:1> 1905)有关。从物理上讲,接触点处的摩擦力矩足够高,足以克服刚性表面的阻力,这意味着粉笔应该进入黑板。既然这种情况不可能发生,粉笔就会跳起来。最近发现,悖论可能发生在机器人操纵器中,它会影响可控性,再加上一些优秀的实验证据(Zhao et al. 2008),引起了现代人对这个老问题的强烈兴趣。这个项目旨在处理一些与painlevevle悖论相关的突出问题。对于在粗糙表面上滑动的细长杆,刚体方程的不确定性或不一致性表示建模失败。假定的刚性必须放松。Hogan和Kristiansen(2016)表明,当接触点有一定的依从性时,就会出现像身体上看到的行为(例如粉笔从板子上瞬间跳开)。这种遵从性(或正则化)是非常小的,所得到的方程导致了一个有丰富的现有数学理论的慢-快系统。然而,为了捕捉刚体的分段光滑(PWS)极限,我们需要几何奇异摄动理论,其中有许多进展。最近发展的“放大法”(Krupa & Szmolyan 2001)能够识别与正则化相关的尺度,其框架可修改为动力系统理论中的经典约简方法。该项目旨在解决的一个突出问题是杜邦和Yamajako(1997)提出的两个粗糙表面之间的杆。目的是建立在Hogan和Kristiansen(2016)的框架之上,其中放松了刚体动力学的潜在建模假设,并通过正则化将PWS系统替换为平滑系统。然后将放大法用于问题的分析。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regularization of Isolated Codimension-2 Discontinuity Sets
  • DOI:
    10.1137/21m142157x
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Cheesman;K. U. Kristiansen;S. Hogan
  • 通讯作者:
    N. Cheesman;K. U. Kristiansen;S. Hogan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

The excess gas paradox at volcanoes: does CO2 favor gas accumulation in mafic magmas?
火山中的过量气体悖论:二氧化碳是否有利于镁铁质岩浆中的气体积累?
  • 批准号:
    2322935
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A Neural and Computational Framework of the Effort Paradox
努力悖论的神经和计算框架
  • 批准号:
    EP/Y014561/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Decoding the Paradox of DDX41-mutant MDS
解读 DDX41 突变型 MDS 的悖论
  • 批准号:
    10905168
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Can air-sea coupling solve the signal-to-noise paradox in climate predictions?
海气耦合能否解决气候预测中的信噪悖论?
  • 批准号:
    2885250
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Unified Understanding of the Cold Dark Matter Paradox and Beyond
对冷暗物质悖论及其他悖论的统一理解
  • 批准号:
    23KJ0280
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
RAISE: On D'Alembert's Paradox: Can airplanes fly in superfluid?
RAISE:关于达朗贝尔悖论:飞机能在超流体中飞行吗?
  • 批准号:
    2332556
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Oxygen paradox and skeletal muscle remodeling based on muscle tissue oxygen levels
基于肌肉组织氧水平的氧悖论和骨骼肌重塑
  • 批准号:
    23K18417
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Resolving the life-history trade-off paradox: Measuring resource acquisition to reveal life-history trade-offs over different temporal scales
解决生活史权衡悖论:衡量资源获取以揭示不同时间尺度的生活史权衡
  • 批准号:
    NE/X000796/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
The paradox between sexuality and asceticism
性与禁欲主义之间的悖论
  • 批准号:
    23K01038
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Paradox of Self-Servingness and Prosociality under High Relational Mobility: The Role of Positive Reputation Expectations
高关系流动性下的自私与亲社会悖论:积极声誉期望的作用
  • 批准号:
    23H01029
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了